Pieaugot atvasināto polinomu skaitam, Teilora rinda tuvojas oriģinālajai funkcijai. Attēlā redzams, kā var aptuvenot sin(x) funkciju, izmantojot 1., 3.., 5., 7., 9., 11., 13. pakāpes polinomus, kad x = 0
Teilora rinda, kas izvirzīta ap punktu
x
=
0
{\displaystyle x=0}
tuvojas eksponenfunkcijas grafikam
Teilora rinda matemātikā ir funkcijai , kam punktā a eksistē visu kārtu atvasinājumi , piekārtota rinda , kuras parciālsummas ir polinomi . Šo rindu 1715. gadā publicējis angļu matemātiķis Bruks Teilors (Brook Taylor ).
Teilora rindu pieraksta šādi:
∑
n
=
0
∞
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
=
f
(
a
)
+
f
′
(
a
)
1
!
(
x
−
a
)
+
f
″
(
a
)
2
!
(
x
−
a
)
2
+
f
(
3
)
(
a
)
3
!
(
x
−
a
)
3
+
⋯
,
{\displaystyle \sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}\,(x-a)^{n}=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+{\frac {f^{(3)}(a)}{3!}}(x-a)^{3}+\cdots ,}
kur
n
!
{\displaystyle n!}
ir n faktoriāls un
f
(
n
)
(
a
)
{\displaystyle f^{(n)}(a)}
ir funkcijas
f
{\displaystyle f}
n -tās kārtas atvasinājums punktā a .
Gadījumā, ja a = 0 , tad šo rindu sauc par Maklorena rindu (nosaukta skotu matemātiķa Kolina Maklorena (Colin Maclaurin ) vārdā).
Pieņemsim, ka eksistē pakāpju rinda
∑
n
=
0
∞
a
n
x
n
{\displaystyle \sum _{n=0}^{\infty }a_{n}x^{n}}
, kas intervālā
x
∈
(
−
R
,
R
)
{\displaystyle x\in (-R,R)}
konverģē uz funkciju
f
(
x
)
{\displaystyle f(x)}
. Tad iespējams pierādīt, ka šīs rindas koeficienti ir
a
n
=
f
(
n
)
(
0
)
n
!
(
n
=
0
,
1
,
2
,
.
.
.
)
{\displaystyle a_{n}={\frac {f^{(n)}(0)}{n!}}(n=0,1,2,...)}
.
Izrakstot rindu:
f
(
x
)
=
∑
n
=
0
∞
a
n
x
n
=
a
0
+
a
1
x
+
a
2
x
2
+
a
3
x
3
+
.
.
.
+
a
n
x
n
+
.
.
.
{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+...+a_{n}x^{n}+...}
, ievietojot
x
=
0
{\displaystyle x=0}
iegūst
f
(
0
)
=
a
0
{\displaystyle f(0)=a_{0}}
f
′
(
x
)
=
a
1
+
2
a
2
x
+
3
a
3
x
2
+
.
.
.
+
n
a
n
x
n
−
1
+
.
.
.
{\displaystyle f'(x)=a_{1}+2a_{2}x+3a_{3}x^{2}+...+na_{n}x^{n-1}+...}
, ievietojot
x
=
0
{\displaystyle x=0}
iegūst
f
′
(
0
)
=
a
1
{\displaystyle f'(0)=a_{1}}
Šo procesu turpinot iegūst citas atvasinājumu vērtības:
f
″
(
0
)
=
2
a
2
{\displaystyle f''(0)=2a_{2}}
,
f
‴
(
0
)
=
3
⋅
2
⋅
a
3
{\displaystyle f'''(0)=3\cdot 2\cdot a_{3}}
,
f
(
4
)
(
0
)
=
4
⋅
3
⋅
2
⋅
a
4
{\displaystyle f^{(4)}(0)=4\cdot 3\cdot 2\cdot a_{4}}
,
f
(
n
)
(
0
)
=
n
⋅
(
n
−
1
)
⋅
.
.
.
⋅
2
⋅
1
⋅
a
n
{\displaystyle f^{(n)}(0)=n\cdot (n-1)\cdot ...\cdot 2\cdot 1\cdot a_{n}}
, līdz ar to
a
n
=
f
(
n
)
(
0
)
n
!
(
n
=
0
,
1
,
2
,
.
.
.
)
{\displaystyle a_{n}={\frac {f^{(n)}(0)}{n!}}(n=0,1,2,...)}
.[ 1]
Šo izvirzījumu rindā sauc par Teilora rindu ap punktu
x
=
0
{\displaystyle x=0}
, ir iespējams izvirzīt rindu ap citiem punktiem, bet šis pierādījums to neapskata.
Eksponentfunkcija :
e
x
=
∑
n
=
0
∞
x
n
n
!
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
visiem
x
{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots \quad {\text{ visiem }}x\!}
Naturāllogaritms :
ln
(
1
−
x
)
=
−
∑
n
=
1
∞
x
n
n
, kur
|
x
|
<
1
{\displaystyle \ln(1-x)=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}\quad {\text{, kur }}|x|<1}
ln
(
1
+
x
)
=
∑
n
=
1
∞
(
−
1
)
n
+
1
x
n
n
, kur
|
x
|
<
1
{\displaystyle \ln(1+x)=\sum _{n=1}^{\infty }(-1)^{n+1}{\frac {x^{n}}{n}}\quad {\text{, kur }}|x|<1}
Ģeometriskā rinda:
1
1
−
x
=
∑
n
=
0
∞
x
n
, kur
|
x
|
<
1
{\displaystyle {\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}\quad {\text{, kur }}|x|<1\!}
Binomiālā rinda:
(
1
+
x
)
α
=
∑
n
=
0
∞
(
α
n
)
x
n
visiem
|
x
|
<
1
un kompleksajiem
α
{\displaystyle (1+x)^{\alpha }=\sum _{n=0}^{\infty }{\alpha \choose n}x^{n}\quad {\text{ visiem }}|x|<1{\text{ un kompleksajiem }}\alpha \!}
ar vispārinātiem binomiālkoeficientiem
(
α
n
)
=
∏
k
=
1
n
α
−
k
+
1
k
=
α
(
α
−
1
)
⋯
(
α
−
n
+
1
)
n
!
{\displaystyle {\alpha \choose n}=\prod _{k=1}^{n}{\frac {\alpha -k+1}{k}}={\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}}
Trigonometriskās funkcijas :
sin
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
x
2
n
+
1
=
x
−
x
3
3
!
+
x
5
5
!
−
⋯
visiem
x
{\displaystyle \sin x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots \quad {\text{ visiem }}x\!}
cos
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
x
2
n
=
1
−
x
2
2
!
+
x
4
4
!
−
⋯
visiem
x
{\displaystyle \cos x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-\cdots \quad {\text{ visiem }}x\!}
tan
x
=
∑
n
=
1
∞
B
2
n
(
−
4
)
n
(
1
−
4
n
)
(
2
n
)
!
x
2
n
−
1
=
x
+
x
3
3
+
2
x
5
15
+
⋯
, kur
|
x
|
<
π
2
{\displaystyle \tan x=\sum _{n=1}^{\infty }{\frac {B_{2n}(-4)^{n}(1-4^{n})}{(2n)!}}x^{2n-1}=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots \quad {\text{, kur }}|x|<{\frac {\pi }{2}}\!}
sec
x
=
∑
n
=
0
∞
(
−
1
)
n
E
2
n
(
2
n
)
!
x
2
n
, kur
|
x
|
<
π
2
{\displaystyle \sec x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}\quad {\text{, kur }}|x|<{\frac {\pi }{2}}\!}
arcsin
x
=
∑
n
=
0
∞
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
, kur
|
x
|
≤
1
{\displaystyle \arcsin x=\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}\quad {\text{, kur }}|x|\leq 1\!}
arccos
x
=
π
2
−
arcsin
x
=
π
2
−
∑
n
=
0
∞
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
, kur
|
x
|
≤
1
{\displaystyle \arccos x={\pi \over 2}-\arcsin x={\pi \over 2}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}\quad {\text{, kur }}|x|\leq 1\!}
arctan
x
=
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
x
2
n
+
1
, kur
|
x
|
≤
1
,
x
≠
±
i
{\displaystyle \arctan x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}\quad {\text{, kur }}|x|\leq 1,x\not =\pm i\!}
Hiperboliskās funkcijas :
sinh
x
=
∑
n
=
0
∞
x
2
n
+
1
(
2
n
+
1
)
!
=
x
+
x
3
3
!
+
x
5
5
!
+
⋯
visiem
x
{\displaystyle \sinh x=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+\cdots \quad {\text{ visiem }}x\!}
cosh
x
=
∑
n
=
0
∞
x
2
n
(
2
n
)
!
=
1
+
x
2
2
!
+
x
4
4
!
+
⋯
visiem
x
{\displaystyle \cosh x=\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+\cdots \quad {\text{ visiem }}x\!}
tanh
x
=
∑
n
=
1
∞
B
2
n
4
n
(
4
n
−
1
)
(
2
n
)
!
x
2
n
−
1
=
x
−
1
3
x
3
+
2
15
x
5
−
17
315
x
7
+
⋯
, kur
|
x
|
<
π
2
{\displaystyle \tanh x=\sum _{n=1}^{\infty }{\frac {B_{2n}4^{n}(4^{n}-1)}{(2n)!}}x^{2n-1}=x-{\frac {1}{3}}x^{3}+{\frac {2}{15}}x^{5}-{\frac {17}{315}}x^{7}+\cdots \quad {\text{, kur }}|x|<{\frac {\pi }{2}}\!}
a
r
c
s
i
n
h
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
, kur
|
x
|
≤
1
{\displaystyle \mathrm {arcsinh} (x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}\quad {\text{, kur }}|x|\leq 1\!}
a
r
c
t
a
n
h
(
x
)
=
∑
n
=
0
∞
x
2
n
+
1
2
n
+
1
, kur
|
x
|
≤
1
,
x
≠
±
1
{\displaystyle \mathrm {arctanh} (x)=\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{2n+1}}\quad {\text{, kur }}|x|\leq 1,x\not =\pm 1\!}