数学において、シューア多項式( - たこうしき、英語: Schur Polynomial)とは、自然数の分割でパラメトライズされたあるn変数対称多項式のことをいう。イサイ・シューアにちなんで名付けられたこの対称多項式は、基本対称多項式やの一般化である。表現論において、シューア多項式は、一般線型群の既約表現のである。シューア多項式は、すべての対称多項式からなる空間の基底となっている。2つのシューア多項式の積は、シューア多項式の非負整数係数一次結合に展開できる。この係数は、によって組合せ論的に記述される。さらに一般に2つの分割に対して定義される歪シューア多項式もシューア多項式と似た性質を持つことが知られている。

Property Value
dbo:abstract
  • 数学において、シューア多項式( - たこうしき、英語: Schur Polynomial)とは、自然数の分割でパラメトライズされたあるn変数対称多項式のことをいう。イサイ・シューアにちなんで名付けられたこの対称多項式は、基本対称多項式やの一般化である。表現論において、シューア多項式は、一般線型群の既約表現のである。シューア多項式は、すべての対称多項式からなる空間の基底となっている。2つのシューア多項式の積は、シューア多項式の非負整数係数一次結合に展開できる。この係数は、によって組合せ論的に記述される。さらに一般に2つの分割に対して定義される歪シューア多項式もシューア多項式と似た性質を持つことが知られている。 (ja)
  • 数学において、シューア多項式( - たこうしき、英語: Schur Polynomial)とは、自然数の分割でパラメトライズされたあるn変数対称多項式のことをいう。イサイ・シューアにちなんで名付けられたこの対称多項式は、基本対称多項式やの一般化である。表現論において、シューア多項式は、一般線型群の既約表現のである。シューア多項式は、すべての対称多項式からなる空間の基底となっている。2つのシューア多項式の積は、シューア多項式の非負整数係数一次結合に展開できる。この係数は、によって組合せ論的に記述される。さらに一般に2つの分割に対して定義される歪シューア多項式もシューア多項式と似た性質を持つことが知られている。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2418808 (xsd:integer)
dbo:wikiPageLength
  • 5479 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 91225694 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:first
  • Bruce E. (ja)
  • Bruce E. (ja)
prop-en:last
  • Sagan (ja)
  • Sagan (ja)
prop-en:title
  • Schur functions in algebraic combinatorics (ja)
  • Schur functions in algebraic combinatorics (ja)
prop-en:urlname
  • Schur_functions_in_algebraic_combinatorics (ja)
  • Schur_functions_in_algebraic_combinatorics (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学において、シューア多項式( - たこうしき、英語: Schur Polynomial)とは、自然数の分割でパラメトライズされたあるn変数対称多項式のことをいう。イサイ・シューアにちなんで名付けられたこの対称多項式は、基本対称多項式やの一般化である。表現論において、シューア多項式は、一般線型群の既約表現のである。シューア多項式は、すべての対称多項式からなる空間の基底となっている。2つのシューア多項式の積は、シューア多項式の非負整数係数一次結合に展開できる。この係数は、によって組合せ論的に記述される。さらに一般に2つの分割に対して定義される歪シューア多項式もシューア多項式と似た性質を持つことが知られている。 (ja)
  • 数学において、シューア多項式( - たこうしき、英語: Schur Polynomial)とは、自然数の分割でパラメトライズされたあるn変数対称多項式のことをいう。イサイ・シューアにちなんで名付けられたこの対称多項式は、基本対称多項式やの一般化である。表現論において、シューア多項式は、一般線型群の既約表現のである。シューア多項式は、すべての対称多項式からなる空間の基底となっている。2つのシューア多項式の積は、シューア多項式の非負整数係数一次結合に展開できる。この係数は、によって組合せ論的に記述される。さらに一般に2つの分割に対して定義される歪シューア多項式もシューア多項式と似た性質を持つことが知られている。 (ja)
rdfs:label
  • シューア多項式 (ja)
  • シューア多項式 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of