Liitännäisyys
Liitännäisyys eli assosiatiivisuus tarkoittaa laskutoimituksen riippumattomuutta sitomisjärjestyksestä. Mielivaltainen laskutoimitus on liitännäinen, jos
pitää paikkansa kaikille , ja . Tätä ominaisuutta kutsutaan myös termillä liitäntälaki.[1]
Esimerkkejä
muokkaaEsimerkiksi kokonaislukujen ja myös reaalilukujen yhteen- ja kertolasku ovat liitännäisiä laskutoimituksia, koska (a+b) + c = a + (b+c) ja (a·b) · c = a · (b·c) kaikilla luvuilla a, b ja c. Sitä vastoin vähennys- ja jakolaskuille ei liitäntälaki päde.
Matriisien kertolasku on liitännäinen muttei vaihdannainen. Vektorien ristitulo ei ole vaihdannainen eikä liitännäinen.
Propositiologiikan JA- ja TAI-konnektiivit ovat liitännäisiä: , ja . Esimerkiksi JA-konnektiivin liitännäisyys nähdään seuraavasti:
- tarkalleen silloin kun ja , mikä taas tarkoittaa sitä, että niin kuin ja vielä edelleen , eli kaikkien kolmen arvona on oltava . Vastaavasti todetaan olevan voimassa tarkalleen silloin, kun kaikkien kolmen arvona on . Siis molemmat laskujärjestykset tuottavat arvon tarkalleen silloin, jos kaikkien kolmen muuttujan arvona on , ja muussa tapauksessa molemmat laskujärjestykset tuottavat arvon .
Funktioiden yhdistely on liitännäinen: .
Liitännäisyyden merkitys
muokkaaLiitännäisyyden takia laskutoimitusten järjestystä ei tarvitse sitoa sulkumerkein, sillä kaikki mahdolliset järjestykset johtaisivat lopulta samaan lopputulokseen, ja siksi kirjallisuudessa jätetään yleensä sulut merkitsemättä tällaisissa tilanteissa. Esimerkiksi
voi tarkoittaa laskutoimitusten suorittamista vaikka järjestyksessä
mutta "oikealla" tavalla ei ole merkitystä, sillä lopputulos on sama. Tästä konkreettiseksi esimerkiksi käy yllä kuvatun laskun suorittaminen kokonaislukujen kertolaskuina niin, että
Katso myös
muokkaaLähteet
muokkaa- ↑ Thompson, Jan & Martinsson, Thomas: Matematiikan käsikirja, s. 18–19. Helsinki: Tammi, 1994. ISBN 951-31-0471-0
Kirjallisuutta
muokkaa- Thompson, Jan & Martinsson, Thomas: Matematiikan käsikirja. Helsinki: Tammi, 1994. ISBN 951-31-0471-0
- Häsä, Jokke; Rämö, Johanna: Johdatus abstraktiin algebraan. Helsinki: Gaudeamus, 2015. ISBN 978-952-495-361-0