Какова длина побережья Великобритании?

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Какова длина побережья Великобритании?
Общая информация
Автор Бенуа Мандельброт[1]
Название англ. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
Дата публикации 1967
Опубликовано в Science
Том 156
Выпуск 3775
Страницы 636-638
Лицензия проприетарная
Идентификаторы
DOI 10.1126/SCIENCE.156.3775.636
PubMed 17837158
JSTOR 1721427
Логотип Викиданных Информация в Викиданных ?
Длина береговой линии Великобритании зависит от способа её измерения: если она измеряется отрезками по 100 км, то она составляет примерно 2 800 км; а если используются отрезки по 50 км — приблизительно 3 400 км, что на 600 км больше

«Какова длина побережья Великобритании? Статистическое самоподобие и фрактальная размерность» (англ. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension) — статья французско-американского математика Бенуа Мандельброта, впервые опубликованная в журнале Science в 1967 году[2]. В этой статье Мандельброт рассматривает самоподобные кривые, которые имеют размерность Хаусдорфа между 1 и 2. Эти кривые представляют собой фракталы, хотя сам термин «фрактал» Мандельброт ввёл в употребление лишь в 1975 году. Статья Мандельброта является одной из первых его публикаций по тематике фракталов[3].

Содержание

[править | править код]

Статья рассматривает парадокс береговой линии — свойство береговой линии, заключающееся в том, что её длина зависит от способа её измерения. Если оценка длины границы или береговой линии осуществляется путём наложения N равных отрезков длиной l на карту, то эмпирические данные свидетельствуют о том, что чем меньше длина отрезка измерений, тем больше становится конечная измеряемая длина. При этом в случае стремления длины отрезка измерений к нулю значение длины береговой линии возрастает до бесконечности. Таким образом, говорить о длине береговой линии в привычном понимании бессмысленно, нужны какие-то другие средства количественной оценки береговых линий. Мандельброт рассматривает эмпирический закон, выведенный Льюисом Ричардсоном, который отметил, что измеренная длина L(G) различных географических границ является функцией шкалы измерения G. Собрав эмпирические данные из нескольких различных примеров, Ричардсон высказал предположение, что L(G) может быть аппроксимирована функцией вида

где M является положительной константой, а D является константой, называемой размерностью, большей или равной 1. При этом береговая линия, если она выглядит гладкой, должна иметь размерность, близкую к 1, а чем более изрезанной она является, то тем ближе её размерность к значению 2. Ричардсон приводит в своих исследованиях в качестве примера размерность 1,02 для побережья Южной Африки и 1,25 — для западного побережья Великобритании.

Далее Мандельброт описывает различные математические кривые, связанные со снежинкой Коха, которые определяются как строго самоподобные. Мандельброт показывает, как вычислить размерность Хаусдорфа для кривых, имеющих размерность между 1 и 2 (а также упоминает, но без подробностей, заполняющую пространство кривую Пеано, которая имеет размерность ровно 2). Он отмечает, что аппроксимация длины кривых через отрезки длины G имеет вид , аналогично закономерности, выведенной Ричардсоном. При этом Мандельброт не утверждает, что любая береговая линия или географическая граница на самом деле имеют дробную размерность. Вместо этого он отмечает, что эмпирический закон Ричардсона совместим с идеей, что географические кривые, такие как береговые линии, могут быть смоделированы с помощью случайных самоподобных фигур дробной размерности.

В конце статьи Мандельброт кратко упоминает, как можно было бы подойти к изучению фракталоподобных объектов в природе, которые являются главным образом случайными. Для этого он определяет статистически самоподобные фигуры и отмечает, что они встречаются в природе.

Статья Мандельброта является отправной точкой в цикле его работ по теории фракталов[4].

Примечания

[править | править код]
  1. PubMed (англ.) — 1997. — PMID:17837158
  2. Benoît Mandelbrot (1967). «How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension», Science, New Series, Vol. 156, No. 3775. (May 5, 1967), pp. 636—638. doi:10.1126/science.156.3775.636
  3. «Dr. Mandelbrot traced his work on fractals to a question he first encountered as a young researcher: how long is the coast of Britain?»: Benoit Mandelbrot (1967). «Benoît Mandelbrot, Novel Mathematician, Dies at 85 Архивная копия от 31 декабря 2018 на Wayback Machine», The New York Times.
  4. «What is the essence of a coastline, for example ? Mandelbrot asked this question in a paper that became a turning point for his thinking: 'How Long Is the Coast of Britain'»: James Gleick (1988) Chaos: Making a New Science, p.94. ISBN 978-0-7474-0413-2.