Сринива́са Рамануджа́н Айенго́р (о файле; там. ஸ்ரீனிவாஸ ராமானுஜன் ஐயங்கார் [sriːniʋaːsa ɾaːmaːnud͡ʑan ajːaŋgar]; англ. Srinivasa Ramanujan Aiyangar; 22 декабря 1887 — 26 апреля 1920) — индийский математик.
Сриниваса Рамануджан | |
---|---|
там. சீனிவாச இராமானுஜன், | |
| |
Дата рождения | 22 декабря 1887[1][2][…] |
Место рождения | |
Дата смерти | 26 апреля 1920[1][2][…] (32 года) |
Место смерти | |
Страна | Британская Индия |
Род деятельности | математик |
Научная сфера | математик |
Место работы | |
Альма-матер | Кумбаконамский колледж Мадрасского университета[англ.], Кембриджский университет |
Научный руководитель |
Годфри Харди Джон Литлвуд |
Известен как |
Суммы Рамануджана Гипотеза Рамануджана Константа Ландау—Рамануджана Фальшивые тета-функции[англ.] Простые числа Рамануджана Константа Рамануджана-Зольднера[англ.] Тета-функции Рамануджана |
Награды и премии | |
Автограф | |
Медиафайлы на Викискладе |
Не имея специального математического образования, получил замечательные результаты в области теории чисел. Наиболее значительна его работа совместно с Годфри Харди по асимптотике числа разбиений p(n).
Биография
правитьРамануджан родился 22 декабря 1887 года в городе Ироду, Мадрасское президентство, на юге Индии, в тамильской семье. Отец работал бухгалтером в небольшой текстильной лавке в городе Кумбаконаме Танджорского района Мадрасского президентства. Мать была глубоко религиозна. Рамануджан воспитывался в строгих традициях замкнутой касты брахманов. В 1889 году он перенёс оспу, но сумел выжить и выздороветь.
В школе проявились его незаурядные способности к математике, и знакомый студент из города Мадраса дал ему книги по тригонометрии. В 14 лет Рамануджан открыл формулу Эйлера и был очень расстроен, узнав, что она уже опубликована. В 16 лет в его руки попало двухтомное сочинение математика Джорджа Шубриджа Карра «Сборник элементарных результатов чистой и прикладной математики», написанное почти за четверть века до этого (впоследствии, благодаря связи с именем Рамануджана, эта книга была подвергнута тщательному анализу). В нём было помещено 6165 теорем и формул, практически без доказательств и пояснений. Юноша, не имевший ни доступа в вуз, ни общения с математиками, погрузился в общение с этим сводом формул. Таким образом, у него сложился определённый способ мышления, своеобразный стиль доказательств. В этот период и определилась математическая судьба Рамануджана. Среди покровителей Рамануджана на этом поприще были его начальник сэр Фрэнсис Спринг, его коллега С. Нараяна Ийер и будущий секретарь Индийского математического общества Р. Рамачандра Рао.
В январе 1913 года Рамануджан написал письмо известному профессору Кембриджского университета Годфри Харди. В письме Рамануджан сообщал, что он не оканчивал университета, а после средней школы занимается математикой самостоятельно. К письму были приложены формулы, автор просил их опубликовать, если они интересны, поскольку сам он беден и не имеет для публикации достаточных средств. Между кембриджским профессором и индийским клерком завязалась оживлённая переписка, в результате которой у Харди накопилось около 120 формул, неизвестных науке того времени. По настоянию Харди Рамануджан приехал в Кембридж. Там он был избран в члены Английского Королевского общества (Английская академия наук) и одновременно профессором Кембриджского университета. Он был первым индийцем, удостоенным таких почестей. Печатные труды с его формулами выходили один за другим, вызывая удивление, а подчас и недоумение коллег.
В формировании математического мира Рамануджана начальный запас математических фактов объединился с огромным запасом наблюдений над конкретными числами. Он коллекционировал такие факты с детства. Он обладал поразительной способностью подмечать огромный числовой материал. По словам Харди, «каждое натуральное число было личным другом Рамануджана»[источник не указан 1358 дней]. Многие математики его времени считали Рамануджана просто экзотическим явлением, опередившим развитие науки как минимум на 100 лет. А современные математики не перестают удивляться проницательности индийского гения, перепрыгнувшего в математику нашего времени[источник не указан 1358 дней].
По семейным обстоятельствам Рамануджан вернулся в Индию, где и умер 26 апреля 1920 года. Причиной ранней (в возрасте 32 лет) смерти мог быть туберкулёз, усугублённый последствиями недоедания, истощения и стресса. В 1994 году предположили, что у Рамануджана мог быть амёбиаз.
Научные интересы и результаты
правитьСфера его математических интересов была очень широка. Это магические квадраты, квадратура круга, бесконечные ряды, гладкие числа, разбиения чисел, гипергеометрические функции, специальные суммы и функции, ныне носящие его имя, определённые интегралы, эллиптические и модулярные функции.
Он нашёл несколько частных решений уравнения Эйлера (см. задача о четырёх кубах), сформулировал около 120 теорем (в основном в виде исключительно сложных тождеств). Современными математиками Рамануджан считается крупнейшим знатоком цепных дробей в мире. Одним из самых замечательных результатов Рамануджана в этой области является формула, в соответствии с которой сумма простого числового ряда с цепной дробью в точности равна выражению, в котором присутствует произведение на :
Математикам хорошо известна формула вычисления числа , полученная Рамануджаном в 1910 году путём разложения арктангенса в ряд Тейлора:
Уже при суммировании первых 100 элементов ( ) этого ряда достигается точность в шестьсот верных значащих цифр.
Примеры бесконечных сумм, найденных Рамануджаном:
- .
Эти удивительные формулы — одни из предложенных им в первом письме к Харди. Доказательства этих равенств нетривиальны.
Другие формулы Рамануджана не менее изящны:
Рамануджан предложил следующее доказательство. Заметим, что
- ,
- ,
- .
Тогда
Объединяя первые три равенства, получаем
- .
Если продолжать процесс подстановки выражений вида бесконечно, то получится формула Рамануджана.
- .
Позже было замечено, что это доказательство Рамануджана является неполным[4]. Такую подстановку нельзя делать бесконечное число раз. В противном случае можно было бы предложить и другие решения. Например,
При этом, действительно, последовательность
имеет предел, равный 3.
Доказательство Рамануджана даёт только верхнюю оценку, показывая, что для любого (конечного) . Таким образом последовательность ограничена сверху. Легко проверить, что последовательность возрастает. Поэтому по теореме Вейерштрасса последовательность имеет конечный предел . Осталось показать, что он действительно равен 3. Следуя определению предела последовательности, покажем, что для любого существует такое число , что для всех . Пусть , где Теперь покажем, что
- .
Внесём под корни
- .
Заметим, что для любого . Следовательно, существует такое натуральное число , что для всех
- ,
так как при . Таким образом, для всех выполняется .
- , где
Следующая формула верна для 0 < a < b + 1/2:
Признание и оценки
правитьХарди остроумно прокомментировал результаты, сообщённые ему Рамануджаном: «Они должны быть истинными, поскольку если бы они не были истинными, то ни у кого не хватило бы воображения, чтобы изобрести их»[источник не указан 1067 дней]. Его формулы иногда всплывают в современнейших разделах науки, о которых в его время никто даже не догадывался.
Сам Рамануджан говорил, что формулы являлись ему во сне и внушались в молитве (в индуизме: в мантра-йоге, медитации)[5] богиней Намагири Тхайяр (Махалакшми) (хинди नामगिरी), почитаемой в Намаккале (там. நாமக்கல்)[6][7].
Чтобы сохранить наследие этого удивительного, ни на кого не похожего математика, в 1957 году Институт фундаментальных исследований Тата издал двухтомник с фотокопиями его черновиков.
Наука ничего не выиграла от того, что Кумбаконамский колледж[англ.] отверг единственного большого учёного, которого он имел, и потеря была неизмеримой. Судьба Рамануджана — худший известный мне пример вреда, который может быть причинён малоэффективной и негибкой системой образования. Требовалось так мало, всего 60 фунтов стерлингов в год на протяжении 5 лет и эпизодического общения с людьми, имеющими настоящие знания и немного воображения, и мир получил бы ещё одного из величайших своих математиков…
— Г. Х. Харди[источник не указан 1067 дней]
Понятия, связанные с именем Рамануджана
правитьИменем Рамануджана названы математические объекты и утверждения, учебные учреждения, журналы и премии. В частности:
В кинематографе
правитьМатематик-самоучка Рамануджан — главный герой следующих художественных фильмов:
- «Рамануджан[англ.]» (2014) производства Индии;
- «Человек, который познал бесконечность» (2015) производства Великобритании, по одноимённой биографии Роберта Канигела.
- Амита Рамануджан, героиня сериала «4исла», названная в честь математика.
- «Умница Уилл Хантинг» (1997) производства США. Упоминается в диалоге профессора математики Джеральда Лембо и психолога Шона.
Примечани��
править- ↑ 1 2 3 4 Архив по истории математики Мактьютор — 1994.
- ↑ 1 2 Srinivasa Ramanujan // Brockhaus Enzyklopädie (нем.)
- ↑ Srinivasa Ramanujan Biography // Biography: Historical & Celebrity Profiles
- ↑ Herschfeld, Aaron (August 1935). "On Infinite Radicals". The American Mathematical Monthly (англ.). 42 (7): 419—429. doi:10.1080/00029890.1935.11987745. ISSN 0002-9890.
- ↑ Цитата из фильма «Человек, который познал бесконечность» (англ. The Man Who Knew Infinity) на временной шкале фильма: 1 час 25 минут.
- ↑ Харди Г. Двенадцать лекций о Рамануджане. — М.: Институт компьютерных исследований, 2002. — 336 с.
- ↑ Гиндикин С. Г. Загадка Рамануджана // Квант. — 1987. — № 10. — С. 20. Архивировано 6 января 2005 года.
Литература
править- The Man Who Knew Infinity: A Life of the Genius Ramanujan, 1991, Robert Kanigel
- Гиндикин С. Г. Рассказы о физиках и математиках. — Издание третье, расширенное. — М.: МЦНМО, 2001. — ISBN 5-900916-83-9.
- Харди Г. Двенадцать лекций о Рамануджане. — М.: Институт компьютерных исследований, 2002. — 336 с.
- Гиндикин С. Г. Загадка Рамануджана // Квант. — 1987. — № 10. — С. 14.
- Аски Р. С. Рамануджан. Гипергеометрические и базисные гипергеометрические ряды // УМН. — 1990. — Т. 45, № 1(271). — С. 33—76.
- Борвейн Дж., Борвейн П. Рамануджан и число π // В мире науки. — 1988. — № 4.
- Левин В. И. Рамануджан — математический гений Индии. — М.: Знание, 1968. (альтернативная ссылка)
- Левин В. И. Жизнь и творчество индийского математика С. Рамануджана // Историко-математические исследования. — М.: Физматгиз, 1960. — Т. XIII.
- Литлвуд Дж. И. Рецензия на собрание сочинений Рамануджана // Математическая смесь. — М.: Наука, 1990. — ISBN 5-02-014332-4.
- Список литературы о Рамануджане в рунете
- George E. Andrews, Bruce C. Berndt Ramanujan’s Lost Notebook: Part I, II, III, IV ISBN 0-387-25529-X, 2008, ISBN 978-0-387-77765-8, 2012, ISBN 978-1-4614-3809-0, 2013, ISBN 978-1-4614-4080-2)
В другом языковом разделе есть более полная статья Srinivasa Ramanujan (фр.). |
В статье не хватает ссылок на источники (см. рекомендации по поиску). |