OFFSET
0,9
COMMENTS
Number of compositions of n into parts congruent to 2 mod 3 (offset -1). - Vladeta Jovovic, Feb 09 2005
a(n) is the number of compositions of n into parts that are odd and >= 3. Example: a(10)=3 counts 3+7, 5+5, 7+3. - David Callan, Jul 14 2006
Referred to as N0102 in R. K. Guy's "Anyone for Twopins?" - Rainer Rosenthal, Dec 05 2006
Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals. - Jonathan Sondow and Sergey Zlobin (sirg_zlobin(AT)mail.ru), Dec 20 2006
Starting with offset 6: (1, 1, 2, 2, 3, 4, 5, ...) = INVERT transform of A106510: (1, 1, -1, 0, 1, -1, 0, 1, -1, ...). - Gary W. Adamson, Oct 10 2008
Starting with offset 7, the sequence 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, ... is called the Fibonacci quilt sequence by Catral et al., in Fib. Q. 2017. - N. J. A. Sloane, Dec 24 2021
Triangle A145462: right border = A000931 starting with offset 6. Row sums = Padovan sequence starting with offset 7. - Gary W. Adamson, Oct 10 2008
Starting with offset 3 = row sums of triangle A146973 and INVERT transform of [1, -1, 2, -2, 3, -3, ...]. - Gary W. Adamson, Nov 03 2008
a(n+5) corresponds to the diagonal sums of "triangle": 1; 1; 1,1; 1,1; 1,2,1; 1,2,1; 1,3,3,1; 1,3,3,1; 1,4,6,4,1; ..., rows of Pascal's triangle (A007318) repeated. - Philippe Deléham, Dec 12 2008
With offset 3: (1, 0, 1, 1, 1, 2, 2, ...) convolved with the tribonacci numbers prefaced with a "1": (1, 1, 1, 2, 4, 7, 13, ...) = the tribonacci numbers, A000073. (Cf. triangle A153462.) - Gary W. Adamson, Dec 27 2008
a(n) is also the number of strings of length (n-8) from an alphabet {A, B} with no more than one A or 2 B's consecutively. (E.g., n = 4: {ABAB,ABBA,BABA,BABB,BBAB} and a(4+8) = 5.) - Toby Gottfried, Mar 02 2010
p(n):=A000931(n+3), n >= 1, is the number of partitions of the numbers {1,2,3,...,n} into lists of length two or three containing neighboring numbers. The 'or' is inclusive. For n=0 one takes p(0)=1. For details see the W. Lang link. There the explicit formula for p(n) (analog of the Binet-de Moivre formula for Fibonacci numbers) is also given. Padovan sequences with different inputs are also considered there. - Wolfdieter Lang, Jun 15 2010
Equals the INVERTi transform of Fibonacci numbers prefaced with three 1's, i.e., (1 + x + x^2 + x^3 + x^4 + 2x^5 + 3x^6 + 5x^7 + 8x^8 + 13x^9 + ...). - Gary W. Adamson, Apr 01 2011
When run backwards gives (-1)^n*A050935(n).
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 0, 1; 1, 0, 1; 0, 1, 0] or of the 3 X 3 matrix [0, 1, 0; 0, 0, 1; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Figure 4 of Brauchart et al., 2014, shows a way to "visualize the Padovan sequence as cuboid spirals, where the dimensions of each cuboid made up by the previous ones are given by three consecutive numbers in the sequence". - N. J. A. Sloane, Mar 26 2014
a(n) is the number of closed walks from a vertex of a unidirectional triangle containing an opposing directed edge (arc) between the second and third vertices. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(0,1,0;0,0,1;1,1,0). - David Neil McGrath, Dec 19 2014
Number of compositions of n-3 (n >= 4) into 2's and 3's. Example: a(12)=5 because we have 333, 3222, 2322, 2232, and 2223. - Emeric Deutsch, Dec 28 2014
The Hoffman (2015) paper "offers significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is" a(n). - N. J. A. Sloane, Jun 24 2016
a(n) gives the number of compositions of n-5 into odd parts where the order of the 1's does not matter. For example, a(11)=4 counts the following compositions of 6: (5,1)=(1,5), (3,3), (3,1,1,1)=(1,3,1,1)=(1,1,3,1)=(1,1,1,3), (1,1,1,1,1,1). - Gregory L. Simay, Aug 04 2016
For n > 6, a(n) is the number of maximal matchings in the (n-5)-path graph, maximal independent vertex sets and minimal vertex covers in the (n-6)-path graph, and minimal edge covers in the (n-5)-pan graph and (n-3)-path graphs. - Eric W. Weisstein, Mar 30, Aug 03, and Aug 07 2017
From James Mitchell and Wilf A. Wilson, Jul 21 2017: (Start)
a(2n + 5) + 2n - 4, n > 2, is the number of maximal subsemigroups of the monoid of order-preserving mappings on a set with n elements.
a(n + 6) + n - 3, n > 3, is the number of maximal subsemigroups of the monoid of order-preserving or reversing mappings on a set with n elements.
(End)
Has the property that the largest of any four consecutive terms equals the sum of the two smallest. - N. J. A. Sloane, Aug 29 2017 [David Nacin points out that there are many sequences with this property, such as 1,1,1,2,1,1,1,2,1,1,1,2,... or 2,3,4,5,2,3,4,5,2,3,4,5,... or 2,2,1,3,3, 4,1,4, 5,5,1,6,6, 7,1,7, 8,8,1,9,9, 10,1,10, ... (spaces added for clarity), and a conjecture I made here in 2017 was simply wrong. I have deleted it. - N. J. A. Sloane, Oct 23 2018]
a(n) is also the number of maximal cliques in the (n+6)-path complement graph. - Eric W. Weisstein, Apr 12 2018
a(n+8) is the number of solus bitstrings of length n with no runs of 3 zeros. - Steven Finch, Mar 25 2020
Named after the architect Richard Padovan (b. 1935). - Amiram Eldar, Jun 08 2021
Shannon et al. (2006) credit a French architecture student Gérard Cordonnier with the discovery of these numbers.
For n >= 3, a(n) is the number of sequences of 0s and 1s of length (n-2) that begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive 1s. - Yifan Xie, Oct 20 2022
For n >= 2, a(n+5) is the number of ways to tile the 1xn board with dominoes and squares (ie. size 1x1) such that are either none or one squares between dominoes, none or one squares at both ends of the board, and there is at least one domino. For example, for n=6, a(11)=4 since the tilings are |2|2, |22|, 2|2| and 222 (where 2 represents a domino and | a square). - Enrique Navarrete, Aug 31 2024
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, Dawn Nelson, Zhao Pan, and Huanzhong Xu, Legal Decompositions Arising from Non-positive Linear Recurrences, Fib. Quart., 55:3 (2017), 252-275. [Note that there is an earlier version of this paper, with only five authors, on the arXiv in 2016. Note to editors: do not merge these two citations. - N. J. A. Sloane, Dec 24 2021]
Richard K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 10-11.
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See P_n.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Ian Stewart, L'univers des nombres, "La sculpture et les nombres", pp. 19-20, Belin-Pour La Science, Paris, 2000.
Steven J. Tedford, Combinatorial identities for the Padovan numbers, Fib. Q., Vol. 57, No. 4 (2019), pp. 291-298.
Hans van der Laan, Het plastische getal. XV lessen over de grondslagen van de architectonische ordonnantie. Leiden, E.J. Brill, 1967.
Don Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..8180 (terms 0..1000 from T. D. Noe)
Kouèssi Norbert Adédji, Japhet Odjoumani, and Alain Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Archivum Mathematicum, Vol. 59 (2023), No. 4, 315-337.
David Applegate, Marc LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
Andrei Asinowski, Cyril Banderier and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
Mohamadou Bachabi and Alain S. Togbé, Products of Fermat or Mersenne numbers in some sequences, Math. Comm. (2024) Vol. 29, 265-285.
Cristina Ballantine and Mircea Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1. doi:10.1186/s13660-015-0952-5.
Barry Balof, Restricted tilings and bijections, J. Integer Seq., Vol. 15, No. 2 (2012), Article 12.2.3, 17 pp.
Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, Vol. 18, No. 1 (2011), #P178.
Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol. 17, No. 3 (2016), pp. 13-30. See Table 4.
Jean-Luc Baril and Jean-Marcel Pallo, A Motzkin filter in the Tamari lattice, Discrete Mathematics, Vol. 338, No. 8 (2015), pp. 1370-1378.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv preprint arXiv:1505.06339 [math.NT], 2015.
Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear Recurrence Sequences and Their Convolutions via Bell Polynomials, Journal of Integer Sequences, Vol. 18 (2015), #15.1.2.
Khadidja Boubellouta and Mohamed Kerada, Some Identities and Generating Functions for Padovan Numbers, Tamap Journal of Mathematics and Statistics (2019), Article SI04.
Olivier Bouillot, The Algebra of Multitangent Functions, arXiv:1404.0992 [math.NT], 2014.
Johann S. Brauchart, Peter D. Dragnev and Edward B. Saff, An Electrostatics Problem on the Sphere Arising from a Nearby Point Charge, arXiv preprint arXiv:1402.3367 [math-ph], 2014. See Section 2, where the Padovan sequence is represented as a spiral of cubes (see Comments above). - N. J. A. Sloane, Mar 26 2014
Ulrich Brenner, Anna Hermann and Jannik Silvanus, Constructing Depth-Optimum Circuits for Adders and AND-OR Paths, arXiv:2012.05550 [cs.DM], 2020.
D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett B., Vol. 393, No. 3-4 (1997), pp. 403-412. UTA-PHYS-96-44; arXiv preprint, arXiv:hep-th/9609128, 1996. Table 1 K_n.
Francis Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [math.NT], 2011.
Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller and Dawn Nelson, Legal Decompositions Arising from Non-positive Linear Recurrences, arXiv preprint arXiv:1606.09312 [math.CO], 2016. [Note that there is a 2017 paper in the Fib. Quart. with the same title but with seven authors - see References above. -N. J. A. Sloane, Dec 24 2021]
Frédéric Chapoton, Multiple T-values with one parameter, arXiv:2108.08534 [math.NT], 2021. See p. 5.
Phyllis Chinn and Silvia Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6 (2003), Article 03.2.3.
Moshe Cohen, The Jones polynomials of 3-bridge knots via Chebyshev knots and billiard table diagrams, arXiv preprint arXiv:1409.6614 [math.GT], 2014.
Mahadi Ddamulira, On the x-coordinates of Pell equations which are sums of two Padovan numbers, arXiv:1905.11322 [math.NT], 2019.
Mahadi Ddamulira, Padovan numbers that are concatenations of two repdigits, arXiv:2003.10705 [math.NT], 2020.
Mahadi Ddamulira, On the x-coordinates of Pell equations that are products of two Padovan numbers, Integers: Electronic Journal of Combinatorial Number Theory, State University of West Georgia, Charles University, and DIMATIA (2020), hal-02471858.
Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, arXiv:2003.10705 [math.NT], 2020.
Mahadi Ddamulira, Padovan numbers that are concatenations of two distinct repdigits, Cambridge Open Engage (2020), preprint.
Mahadi Ddamulira, On the x-coordinates of Pell Equations that are Products of Two Padovan Numbers, Integers (2020) Vol. 20, #A70.
Tomislav Doslic and I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea, Vol. 11 (2016), pp. 255-276.
James East, Jitender Kumar, James D. Mitchell and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [From James Mitchell and Wilf A. Wilson, Jul 21 2017]
Aysel Erey, Zachary Gershkoff, Amanda Lohss and Ranjan Rohatgi, Characterization and enumeration of 3-regular permutation graphs, arXiv:1709.06979 [math.CO], 2017.
Reinhardt Euler, The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.6.
Reinhardt Euler, Paweł Oleksik and Zdzisław Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory, Vol. 33, No. 3 (2013), pp. 531-557, ISSN (Print) 2083-5892.
Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications, Vol. 10, No. 3 (2019), pp. 643-651.
Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
Philippe Flajolet and Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics, Vol. 7, No. 1 (1998), pp. 15-35.
Dale Gerdemann, Sums of Padovan numbers equal to sums of powers of plastic number, YouTube video.
Dale Gerdemann, Tuba Fantasy (music generated from Padovan numbers), YouTube video.
Juan B. Gil, Michael D. Weiner and Catalin Zara, Complete Padovan sequences in finite fields, arXiv:math/0605348 [math.NT], 2006.
Juan B. Gil, Michael D. Weiner and Catalin Zara, Complete Padovan sequences in finite fields, The Fibonacci Quarterly, Vol. 45, No. 1 (Feb 2007), pp. 64-75.
N. Gogin and A. Mylläri, Padovan-like sequences and Bell polynomials, Proceedings of Applications of Computer Algebra ACA, 2013.
Taras Goy, Some families of identities for Padovan numbers, Proc. Jangjeon Math. Soc., Vol. 21, No. 3 (2018), pp. 413-419.
Taras Goy and Mark Shattuck, Determinant Identities for Toeplitz-Hessenberg Matrices with Tribonacci Number Entries, arXiv:2003.10660 [math.CO], 2020.
T. M. Green, Recurrent sequences and Pascal's triangle, Math. Mag., Vol. 41, No. 1 (1968), pp. 13-21.
Tony Grubman and Ian M. Wanless, Growth rate of canonical and minimal group embeddings of spherical latin trades, Journal of Combinatorial Theory, Series A, 2014, 57-72.
Richard K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
Rachel Wells Hall, Math for Poets and Drummers, Math Horizons, Vol. 15, No. 3 (2008), pp. 10-24; preprint; Wayback Machine link.
Michael E. Hoffman, Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu Journal of Mathematics, Vol. 69, No. 2 (2015), pp. 345-366.
Svenja Huntemann and Neil A. McKay, Counting Domineering Positions, arXiv:1909.12419 [math.CO], 2019.
Aleksandar Ilić, Sandi Klavžar, and Yoomi Rho, Parity index of binary words and powers of prime words, The electronic journal of combinatorics, Vol. 19, No. 3 (2012), #P44. - N. J. A. Sloane, Sep 27 2012
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 393.
Milan Janjic, Recurrence Relations and Determinants, arXiv preprint arXiv:1112.2466 [math.CO], 2011.
Milan Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.5.
Milan Janjić, Words and Linear Recurrences, J. Int. Seq., Vol. 21 (2018), Article 18.1.4.
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 90.
Paul Johnson, Simultaneous cores with restrictions and a question of Zaleski and Zeilberger, arXiv:1802.09621 [math.CO], 2018.
Virginia Johnson and C. K. Cook, Areas of Triangles and other Polygons with Vertices from Various Sequences, arXiv preprint arXiv:1608.02420 [math.CO], 2016.
Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart., Vol. 44, No. 4 (2006), pp. 335-340.
Wolfdieter Lang, Padovan combinatorics, explicit formula, and sequences with various inputs. - Wolfdieter Lang, Jun 15 2010
Ana Cecilia García Lomelí and Santos Hernández Hernández, Repdigits as Sums of Two Padovan Numbers, J. Int. Seq., Vol. 22 (2019), Article 19.2.3.
J. M. Luck and A. Mehta, Universality in survivor distributions: Characterising the winners of competitive dynamics, arXiv preprint arXiv:1511.04340 [q-bio.QM], 2015.
R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, see Table 49.
Steven J. Miller and Alexandra Newlon, The Fibonacci Quilt Game, arXiv preprint arXiv:1909.01938 [math.NT], 2019. Also Fib. Q., Vol. 58, No. 2 (2020), pp. 157-168. (See Fig. 2, The "Fibonacci Quilt" sequence.)
Ryan Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS, Vol. 12 (2009), Article 09.6.5.
Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
Wilbert Osmond, Growing Trees in Padovan Sequence For The Enhancement of L-System Algorithm, 2014.
Richard Padovan, Dom Hans Van Der Laan And The Plastic Number, pp. 181-193 in Nexus IV: Architecture and Mathematics, eds. Kim Williams and Jose Francisco Rodrigues, Fucecchio (Florence): Kim Williams Books, 2002.
Richard Padovan, Dom Hans van der Laan and the Plastic Number, Chapter 74, pp. 407-419, Volume II of K. Williams and M. J. Ostwald (eds.), Architecture and Mathematics from Antiquity to the Future, DOI 10.1007/978-3-319-00143-2_27, Springer International Publishing Switzerland, 2015.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Narad Rampersad and Max Wiebe, Sums of products of binomial coefficients mod 2 and 2-regular sequences, Integers (2024) Vol. 24, Art. No. A73. See p. 11.
Salah Eddine Rihane, Chèfiath Awero Adegbindin and Alain Togbé, Fermat Padovan And Perrin Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.2.
Shingo Saito, Tatsushi Tanaka and Noriko Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, J. Int. Seq., Vol. 14 (2011), Article 11.2.4, Conjecture 2.
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
Michel Waldschmidt, Lectures on Multiple Zeta Values (IMSC 2011).
Eric Weisstein's World of Mathematics, Maximal Clique.
Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set.
Eric Weisstein's World of Mathematics, Minimal Edge Cover.
Eric Weisstein's World of Mathematics, Minimal Vertex Cover.
Eric Weisstein's World of Mathematics, Padovan Sequence.
Eric Weisstein's World of Mathematics, Pan Graph.
Eric Weisstein's World of Mathematics, Path Complement Graph.
Eric Weisstein's World of Mathematics, Path Graph.
Erv Wilson, The Scales of Mt. Meru.
Iwona Włoch, Urszula Bednarz, Dorota Bród, Andrzej Włoch and Małgorzata Wołowiec-Musiał, On a new type of distance Fibonacci numbers, Discrete Applied Math., Vol. 161, No. 16-17 (November 2013) pp. 2695-2701.
Richard Yanco, Letter and Email to N. J. A. Sloane, 1994.
Richard Yanco and Ansuman Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
Diyar O. Mustafa Zangana and Ahmet Öteleş, Padovan Numbers by the Permanents of a Certain Complex Pentadiagonal Matrix, J. of Garmian Univ., Vol. 5, No. 2 (2018), pp. 330-338.
Sergey Zlobin, A note on arithmetic properties of multiple zeta values, arXiv:math/0601151 [math.NT], 2006.
Index entries for linear recurrences with constant coefficients, signature (0,1,1).
FORMULA
G.f.: (1-x^2)/(1-x^2-x^3).
a(n) is asymptotic to r^n / (2*r+3) where r = 1.3247179572447... = A060006, the real root of x^3 = x + 1. - Philippe Deléham, Jan 13 2004
a(n)^2 + a(n+2)^2 + a(n+6)^2 = a(n+1)^2 + a(n+3)^2 + a(n+4)^2 + a(n+5)^2 (Barniville, Question 16884, Ed. Times 1911).
a(n+5) = a(0) + a(1) + ... + a(n).
a(n) = central and lower right terms in the (n-3)-th power of the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 1 1 0]. E.g., a(13) = 7. M^10 = [3 5 4 / 4 7 5 / 5 9 7]. - Gary W. Adamson, Feb 01 2004
G.f.: 1/(1 - x^3 - x^5 - x^7 - x^9 - ...). - Jon Perry, Jul 04 2004
a(n+4) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n+k-2)/3), k). - Paul Barry, Jul 06 2004
a(n+3) = Sum_{k=0..floor(n/2)} binomial(k, n-2k). - Paul Barry, Sep 17 2004, corrected by Greg Dresden and Zi Ye, Jul 06 2021
a(n+3) is diagonal sum of A026729 (as a number triangle), with formula a(n+3) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} (-1)^(n-k+i)*binomial(n-k, i)*binomial(i+k, i-k). - Paul Barry, Sep 23 2004
a(n) = a(n-1) + a(n-5) = A003520(n-4) + A003520(n-13) = A003520(n-3) - A003520(n-9). - Henry Bottomley, Jan 30 2005
a(n+3) = Sum_{k=0..floor(n/2)} binomial((n-k)/2, k)(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
The sequence 1/(1-x^2-x^3) (a(n+3)) is given by the diagonal sums of the Riordan array (1/(1-x^3), x/(1-x^3)). The row sums are A000930. - Paul Barry, Feb 25 2005
a(n) = A023434(n-7) + 1 for n >= 7. - David Callan, Jul 14 2006
a(n+5) corresponds to the diagonal sums of A030528. The binomial transform of a(n+5) is A052921. a(n+5) = Sum_{k=0..floor(n/2)} Sum_{k=0..n} (-1)^(n-k+i)*binomial(n-k, i)binomial(i+k+1, 2k+1). - Paul Barry, Jun 21 2004
r^(n-1) = (1/r)*a(n) + r*(n+1) + a(n+2), where r = 1.32471... is the real root of x^3 - x - 1 = 0. Example: r^8 = (1/r)*a(9) + r*a(10) + a(11) = (1/r)*2 + r*3 + 4 = 9.483909... - Gary W. Adamson, Oct 22 2006
a(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r, s, t are the three roots of x^3-x-1. - Keith Schneider (schneidk(AT)email.unc.edu), Sep 07 2007
a(n) = -k*a(n-1) + a(n-2) + (k+1)a(n-2) + k*a(n-4), n > 3, for any value of k. - Gary Detlefs, Sep 13 2010
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(2) + a(4) + a(6) + ... + a(2*n) = a(2*n+3).
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2)+1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+1.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 1)/2. (End)
a(n+3) = Sum_{k=0..floor((n+1)/2)} binomial((n+k)/3,k), where binomial((n+k)/3,k)=0 for noninteger (n+k)/3. - Nikita Gogin, Dec 07 2012
a(n) = A182097(n-3) for n > 2. - Jonathan Sondow, Mar 14 2014
a(n) = the k-th difference of a(n+5k) - a(n+5k-1), k>=1. For example, a(10)=3 => a(15)-a(14) => 2nd difference of a(20)-a(19) => 3rd difference of a(25)-a(24)... - Bob Selcoe, Mar 18 2014
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A=(0,0,1,0,1,0,1,...) and S=(0,1,0,0,...) or A063524. [* is convolution operation] Define S^*0=I with I=(1,0,0,...). Then a(n) = Sum_{j=1...n} T(n,j). - David Neil McGrath, Dec 19 2014
If x=a(n), y=a(n+1), z=a(n+2), then x^3 + 2*y*x^2 - z^2*x - 3*y*z*x + y^2*x + y^3 - y^2*z + z^3 = 1. - Alexander Samokrutov, Jul 20 2015
For the sequence shifted by 6 terms, a(n) = Sum_{k=ceiling(n/3)..ceiling(n/2)} binomial(k+1,3*k-n) [Doslic-Zubac]. - N. J. A. Sloane, Apr 23 2017
From Joseph M. Shunia, Jan 21 2020: (Start)
a(2n) = 2*a(n-1)*a(n) + a(n)^2 + a(n+1)^2, for n > 8.
a(2n-1) = 2*a(n)*a(n+1) + a(n-1)^2, for n > 8.
a(2n+1) = 2*a(n+1)*a(n+2) + a(n)^2, for n > 7. (End)
0*a(0) + 1*a(1) + 2*a(2) + ... + n*a(n) = n*a(n+5) - a(n+9) + 2. - Greg Dresden and Zi Ye, Jul 02 2021
From Greg Dresden and Zi Ye, Jul 06 2021: (Start)
2*a(n) = a(n+2) + a(n-5) for n >= 5.
3*a(n) = a(n+4) - a(n-9) for n >= 9.
4*a(n) = a(n+5) - a(n-9) for n >= 9. (End)
EXAMPLE
G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 4*x^11 + ...
MAPLE
A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
A000931:=-(1+z)/(-1+z^2+z^3); # Simon Plouffe in his 1992 dissertation; gives sequence without five leading terms
a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to 50 do a[n]:=a[n-2]+a[n-3]; end do; # Francesco Daddi, Aug 04 2011
MATHEMATICA
CoefficientList[Series[(1-x^2)/(1-x^2-x^3), {x, 0, 50}], x]
a[0]=1; a[1]=a[2]=0; a[n_]:= a[n]= a[n-2] + a[n-3]; Table[a[n], {n, 0, 50}] (* Robert G. Wilson v, May 04 2006 *)
LinearRecurrence[{0, 1, 1}, {1, 0, 0}, 50] (* Harvey P. Dale, Jan 10 2012 *)
Table[RootSum[-1 -# +#^3 &, 5#^n -6#^(n+1) +4#^(n+2) &]/23, {n, 0, 50}] (* Eric W. Weisstein, Nov 09 2017 *)
PROG
(Haskell)
a000931 n = a000931_list !! n
a000931_list = 1 : 0 : 0 : zipWith (+) a000931_list (tail a000931_list)
-- Reinhard Zumkeller, Feb 10 2011
(PARI) Vec((1-x^2)/(1-x^2-x^3) + O(x^50)) \\ Charles R Greathouse IV, Feb 11 2011
(PARI) {a(n) = if( n<0, polcoeff(1/(1+x-x^3) + x * O(x^-n), -n), polcoeff( (1 - x^2)/(1-x^2-x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
(Magma) I:=[1, 0, 0]; [n le 3 select I[n] else Self(n-2) + Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 21 2015
(Sage)
def A000931_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x^2)/(1-x^2-x^3) ).list()
A000931_list(50) # G. C. Greubel, Dec 30 2019
(GAP) a:=[1, 0, 0];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Dec 30 2019
(Python)
def aupton(nn):
alst = [1, 0, 0]
for n in range(3, nn+1): alst.append(alst[n-2]+alst[n-3])
return alst
print(aupton(49)) # Michael S. Branicky, Mar 28 2022
CROSSREFS
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Closely related to A001608.
Doubling every term gives A291289.
KEYWORD
nonn,easy,nice,changed
AUTHOR
EXTENSIONS
Edited by Charles R Greathouse IV, Mar 17 2010
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved