Article
Keywords:
generalized Lucas numbers; linear forms in logarithms; reduction method
Summary:
Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _{n\ge 0}$ be the generalized Lucas sequence given by $U_{n+2}=rU_{n+1} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P_m=U_nU_k\quad \text{and}\quad E_m=U_nU_k\,, \] where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.
References:
[1] Baker, A., Davenport, H.:
The equations $3x^2-2 = y^2$ and $8x^2-7 = z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
MR 0248079
[2] Bugeaud, Y., Mignotte, M., Siksek, S.:
Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers. Ann. of Math. (2) 163 (2006), 969–1018.
MR 2215137
[4] Dujella, A., Pethő, A.:
A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306.
MR 1645552
[5] Guzmán, S., Luca, F.:
Linear combinations of factorials and $s$-units in a binary recurrence sequence. Ann. Math. Qué. 38 (2014), 169–188.
MR 3283974
[9] Ribenboim, P.:
My numbers, my friends. Popular Lectures on Number Theory. Springer-Verlag, Berlin, Heidelberg, 2000.
MR 1761897