Previous |  Up |  Next

Article

Keywords:
generalized Lucas numbers; linear forms in logarithms; reduction method
Summary:
Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _{n\ge 0}$ be the generalized Lucas sequence given by $U_{n+2}=rU_{n+1} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P_m=U_nU_k\quad \text{and}\quad E_m=U_nU_k\,, \] where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.
References:
[1] Baker, A., Davenport, H.: The equations $3x^2-2 = y^2$ and $8x^2-7 = z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 0248079
[2] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers. Ann. of Math. (2) 163 (2006), 969–1018. MR 2215137
[3] Ddamulira, M.: Padovan numbers that are concatenations of two distinct repdigits. Math. Slovaca 71 (2021), 275–284. DOI 10.1515/ms-2017-0467 | MR 4243626
[4] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306. MR 1645552
[5] Guzmán, S., Luca, F.: Linear combinations of factorials and $s$-units in a binary recurrence sequence. Ann. Math. Qué. 38 (2014), 169–188. MR 3283974
[6] Kiss, P.: On common terms of linear recurrences. Acta Math. Acad. Sci. Hungar. 40 (1–2) (1982), 119–123. DOI 10.1007/BF01897310 | MR 0685998
[7] Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in then logarithms of algebraic numbers II. Izv. Math. 64 (2000), 1217–1269. DOI 10.1070/IM2000v064n06ABEH000314 | MR 1817252
[8] Mignotte, M.: Intersection des images de certaines suites récurrentes linéaires. Theoret. Comput. Sci. 7.1 (1978), 117–121. DOI 10.1016/0304-3975(78)90043-9 | MR 0498356 | Zbl 0393.10009
[9] Ribenboim, P.: My numbers, my friends. Popular Lectures on Number Theory. Springer-Verlag, Berlin, Heidelberg, 2000. MR 1761897
[10] Schlickewei, H.P., Schmidt, W.M.: The intersection of recurrence sequences. Acta Arith. 72.1 (1995), 1–4. DOI 10.4064/aa-72-1-1-44 | MR 1346803 | Zbl 0851.11007
Partner of
EuDML logo