ബ്രക്കിസ്റ്റോക്രോൺ പ്രശ്നം
ലംബപ്രതലത്തിലെ രണ്ടു ബിന്ദുക്കൾക്കിടയിൽ ഗുരുത്വാകർഷണത്തിന്റെ മാത്രം സ്വാധീനത്തിൽ ഏറ്റവും കുറച്ചു സമയം കൊണ്ട് സഞ്ചരിക്കുന്ന വസ്തുവിന്റെ സഞ്ചാരപാത ഏതായിരിക്കും എന്ന ചോദ്യമാണ് ഭൗതികശാസ്ത്രത്തിൽ ബ്രക്കിസ്റ്റോക്രോൺ പ്രശ്നം എന്നറിയപ്പെടുന്നത്. ഈ സഞ്ചാരപാത ഒരു ചക്രാഭം (സൈക്ലോയിഡ്)ആണ്.ഹ്രസ്വം എന്നർത്ഥം വരുന്ന ബ്രക്കിസ്(Brachis),സമയം എന്നർത്ഥം വരുന്ന ക്രോണോസ്(Chronos) എന്നീ ഗ്രീക്ക് പദങ്ങളാണ് പേരിനു പിന്നിൽ.
ചരിത്രം
[തിരുത്തുക]1638-ൽ ഗലീലിയോ ഈ സമസ്യക്ക് ഉത്തരം കണ്ടെത്താൻ നിരവധി പരീക്ഷണങ്ങൾ നടത്തിയിരുന്നുവെങ്കിലും അവയൊന്നും ശരിയായ ഉത്തരം നൽകിയില്ല. ജർമനിയിലെ ആദ്യ ശാസ്ത്രപ്രസിദ്ധീകരണമായ ആക്ട എരുഡിറ്റോറിയ(Acta Eroditorum)ത്തിൽ 1696 ജനുവരി ഒന്നിന് ജൊഹാൻ ബെർണോളി ഈ പ്രശ്നം പ്രസിദ്ധീകരിച്ചു. ബെർണോളിയുടെ കുറിപ്പിന് അക്കാലത്തെ പ്രമുഖ ഗണിത ശാസ്ത്രജ്ഞരായിരുന്ന സർ ഐസക് ന്യൂട്ടൺ, എൽ ഹോസ്പിറ്റൽ,ജേക്കബ് ബർണോളി,ഗോട്ട്ഫ്രൈഡ് ലെയ്ബ്നിസ് എന്നിവർ മറുപടി നൽകി. തൊട്ടടുത്ത മെയ് മാസത്തിൽ ഈ ശാസ്ത്രജ്ഞരുടെ പ്രതികരണവും പ്രശ്നത്തിന്റെ ഉത്തരവും ബർണോളി പ്രസിദ്ധപ്പെടുത്തി.ഈ പ്രശ്നത്തെക്കുറിച്ചുള്ള ചർച്ചകളാണ് പിൽക്കാലത്ത് വ്യതിയാനങ്ങളുടെ കലനം(Calculus of variations)എന്ന ഗണിതശാസ്ത്ര രീതിയുടെ വളർച്ചയ്ക്കും ഓയിലർ സമവാക്യ(Euler Equation)ത്തിന്റെ കണ്ടുപിടിത്തത്തിനും വഴിയൊരുക്കിയത്.
പ്രശ്നം
[തിരുത്തുക]ഒരു ലംബപ്രതലത്തിൽ A,B എന്നിങ്ങനെ രണ്ടു ബിന്ദുക്കളുണ്ടെന്നിരിക്കട്ടെ. ഗുരുത്വാകർഷണത്തിന്റെ മാത്രം സ്വാധീനത്തിൽ Aയിൽ നിന്നും യാത്രയാരംഭിക്കുന്ന ഒരു വസ്തു ഏറ്റവും ചുരുങ്ങിയ സമയം കൊണ്ട് Bയിലെത്തണമെങ്കിൽ വസ്തു ഏത് പാത സ്വീകരിക്കണം?
ഉത്തരം
[തിരുത്തുക]ഒരു വളരെച്ചെറിയ ദൂരം സഞ്ചരിക്കാൻ വസ്തു എടുക്കുന്ന സമയം കണ്ടെത്തി സമാകലനം നടത്തിയാൽ ആകെ ദൂരം സഞ്ചരിക്കാൻ വസ്തു എടുക്കുന്ന സമയം ലഭിക്കും. ഈ സമാകലനസമവാക്യത്തിന് ഏറ്റവും ചെറിയ ഉത്തരം ലഭിക്കത്തക്കവിധം വസ്തു സഞ്ചരിക്കുന്ന പാതയാണ് കണ്ടെത്തേണ്ടത്.
അതായത്,
ആകെ സമയം ,
ഇവിടെ v വസ്തുവിന്റെ പ്രവേഗം ആണ്. വസ്തു സ്ഥിരാവസ്ഥയിൽ നിന്ന് യാത്രയാരംഭിക്കുന്നു എന്ന് അനുമാനിച്ചാൽ y=0 ആയിരിക്കുമ്പോൾ v=0 ആയിരിക്കും.
വസ്തു ഏറ്റവും കുറച്ചു സമയമെടുക്കുന്ന പാതയിൽ ഈ സമാകാലത്തിന്റെ വില ഏറ്റവും ചെറുതായിരിക്കും.
ഊർജ്ജ സംരക്ഷണനിയമപ്രകാരം;
അപ്പോൾ ആകെ സമയം ;
ഇവിടെ ആണ്.
സമാകലം ഏറ്റവും ചെറുതാകുന്നത് ഓയിലർ സമവാക്യം അനുസരിക്കുമ്പോഴാണ്.അതായത്,
ആയിരിക്കണം
അങ്ങനെ ലഭിക്കുന്ന അവകലനസമവാക്യത്തിന്റെ നിർദ്ധാരണമൂല്യം;
[1]എന്ന രൂപത്തിലായിരിക്കും.ഇത് ഒരു സൈക്ലോയിഡിന്റെ സമവാക്യമാണ്.
അവലംബം
[തിരുത്തുക]- ↑ ഗോൾഡ്സ്റ്റൈൻ, ഹെർബർട്ട് (2002). Classical Mechanics. ഡോർലിൻ കിൻഡേഴ്സ്ലി. ISBN 978-81-7758-283-3.
{{cite book}}
: Cite has empty unknown parameter:|month=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help)