Template:Infobox rutherfordium

Rutherfordium, 104Rf
Rutherfordium
Pronunciation/ˌrʌðərˈfɔːrdiəm/ (RUDH-ər-FOR-dee-əm)
Mass number[267]
Rutherfordium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Hf

Rf

lawrenciumrutherfordiumdubnium
Atomic number (Z)104
Groupgroup 4
Periodperiod 7
Block  d-block
Electron configuration[Rn] 5f14 6d2 7s2[1][2]
Electrons per shell2, 8, 18, 32, 32, 10, 2
Physical properties
Phase at STPsolid (predicted)[1][2]
Melting point2400 K ​(2100 °C, ​3800 °F) (predicted)[1][2]
Boiling point5800 K ​(5500 °C, ​9900 °F) (predicted)[1][2]
Density (near r.t.)17 g/cm3 (predicted)[3][4]
Atomic properties
Oxidation statescommon: +4
(+3), (+4)[2]
Ionization energies
  • 1st: 580 kJ/mol
  • 2nd: 1390 kJ/mol
  • 3rd: 2300 kJ/mol
  • (more) (all but first estimated)[2]
Atomic radiusempirical: 150 pm (estimated)[2]
Covalent radius157 pm (estimated)[1]
Other properties
Natural occurrencesynthetic
Crystal structurehexagonal close-packed (hcp)
Hexagonal close-packed crystal structure for rutherfordium

(predicted)[5]
CAS Number53850-36-5
History
Namingafter Ernest Rutherford
DiscoveryJoint Institute for Nuclear Research and Lawrence Berkeley National Laboratory (1969)
Isotopes of rutherfordium
Main isotopes[6] Decay
abun­dance half-life (t1/2) mode pro­duct
261Rf synth 2.1 s SF82%
α18% 257No
263Rf synth 15 min[7] SF<100%?
α~30%? 259No
265Rf synth 1.1 min[8] SF
267Rf synth 48 min[9] SF
 Category: Rutherfordium
| references
Rf · Rutherfordium
Lr ←

ibox Lr

iso
104
Rf  [e]
IB-Rf [e]
IBisos [e]
→ Db

ibox Db

indexes by PT (page)
child table, as reused in {IB-Rf}
Main isotopes of rutherfordium
Main isotopes[6] Decay
abun­dance half-life (t1/2) mode pro­duct
261Rf synth 2.1 s SF82%
α18% 257No
263Rf synth 15 min[7] SF<100%?
α~30%? 259No
265Rf synth 1.1 min[8] SF
267Rf synth 48 min[9] SF
Data sets read by {{Infobox element}}
Name and identifiers
Symbol etymology (11 non-trivial)
Top image (caption, alt)
Pronunciation
Allotropes (overview)
Group (overview)
Period (overview)
Block (overview)
Natural occurrence
Phase at STP
Oxidation states
Spectral lines image
Electron configuration (cmt, ref)
Isotopes
Standard atomic weight
  most stable isotope
Wikidata
Wikidata *
* Not used in {{Infobox element}} (2023-01-01)
See also {{Index of data sets}} · Cat:data sets (46) · (this table: )

References

  1. ^ a b c d e "Rutherfordium". Royal Chemical Society. Retrieved 2019-09-21.
  2. ^ a b c d e f g Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  3. ^ Gyanchandani, Jyoti; Sikka, S. K. (10 May 2011). "Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals". Physical Review B. 83 (17): 172101. Bibcode:2011PhRvB..83q2101G. doi:10.1103/PhysRevB.83.172101.
  4. ^ Kratz; Lieser (2013). Nuclear and Radiochemistry: Fundamentals and Applications (3rd ed.). p. 631.
  5. ^ Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11): 113104. Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  6. ^ a b Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  7. ^ a b Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2008-06-06.
  8. ^ a b Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dimitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Karpov, A. V.; Popeko, A. G.; Sabel'nikov, A. V.; Svirikhin, A. I.; Vostokin, G. K.; Hamilton, J. H.; Kovrinzhykh, N. D.; Schlattauer, L.; Stoyer, M. A.; Gan, Z.; Huang, W. X.; Ma, L. (30 January 2018). "Neutron-deficient superheavy nuclei obtained in the 240Pu+48Ca reaction". Physical Review C. 97 (14320): 014320. Bibcode:2018PhRvC..97a4320U. doi:10.1103/PhysRevC.97.014320.
  9. ^ a b Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. (2022). "Investigation of 48Ca-induced reactions with 242Pu and 238U targets at the JINR Superheavy Element Factory". Physical Review C. 106 (24612): 024612. Bibcode:2022PhRvC.106b4612O. doi:10.1103/PhysRevC.106.024612. S2CID 251759318.