Als Standardbasis, natürliche Basis, Einheitsbasis oder kanonische Basis bezeichnet man im mathematischen Teilgebiet der linearen Algebra eine spezielle Basis, die in gewissen Vektorräumen bereits aufgrund ihrer Konstruktion unter allen möglichen Basen ausgezeichnet ist.

Basis allgemein

Bearbeiten

Allgemein ist eine Basis eines Vektorraums eine Familie von Vektoren mit der Eigenschaft, dass sich jeder Vektor des Raumes eindeutig als endliche Linearkombination dieser darstellen lässt. Die Koeffizienten dieser Linearkombination heißen die Koordinaten des Vektors bezüglich dieser Basis. Ein Element der Basis heißt Basisvektor.

Jeder Vektorraum hat eine Basis, im Allgemeinen sogar zahlreiche Basen, unter denen jedoch keine ausgezeichnet ist.

Beispiele

Bearbeiten
  • Die Parallelverschiebungen der Anschauungsebene bilden einen Vektorraum (siehe Euklidischer Raum) der Dimension zwei. Es ist jedoch keine Basis ausgezeichnet. Eine mögliche Basis bestünde etwa aus der „Verschiebung um eine Einheit nach rechts“ und der „Verschiebung um eine Einheit nach oben“. Hierbei sind „Einheit“, „rechts“ und „oben“ aber Konventionen bzw. anschauungsabhängig.
  • Diejenigen reellwertigen Funktionen  , die zweimal differenzierbar sind und für alle   die Gleichung   erfüllen, bilden einen reellen Vektorraum   der Dimension zwei. Eine mögliche Basis wird von der Sinus- sowie der Cosinus-Funktion gebildet. Diese Basis zu wählen, mag zwar naheliegen, sie ist jedoch nicht besonders vor anderen Auswahlen ausgezeichnet.

Standardbasis in den Standardräumen

Bearbeiten
 
Standardbasisvektoren in der euklidischen Ebene

Die meist als erstes eingeführten Vektorräume sind die Standardräume   mit  . Elemente des   sind alle  -Tupel reeller Zahlen. Man kann unter allen Basen des   diejenige auszeichnen, bezüglich der die Koordinaten eines Vektors genau mit seinen Tupel-Komponenten übereinstimmen. Diese Basis besteht also aus   wobei

 

und wird als die Standardbasis des   bezeichnet.

Dasselbe gilt für den Vektorraum   über einem beliebigen Körper  , das heißt auch hier gibt es die Standard-Basisvektoren  .

Beispiel

Bearbeiten

Die Standardbasis des   besteht aus   und  . Die beiden oben als Beispiel aufgeführten Vektorräume sind zwar isomorph zu  , besitzen jedoch keine Standardbasis. Infolgedessen ist auch unter den Isomorphismen zwischen diesen Räumen und   keiner ausgezeichnet.

Bezeichnung

Bearbeiten

Die Bezeichnung   für die Standard-Basisvektoren ist weit verbreitet. Die drei Standard-Basisvektoren des dreidimensionalen Vektorraums   werden in den angewandten Naturwissenschaften jedoch manchmal mit   bezeichnet:

 

Weitere Eigenschaften

Bearbeiten

Der   hat über die Vektorraum-Eigenschaft hinaus noch weitere Eigenschaften. Auch hinsichtlich dieser erfüllen die Standard-Basisvektoren oft besondere Bedingungen. So ist die Standardbasis eine Orthonormalbasis bezüglich des Standardskalarprodukts.

Standardbasis im Matrizenraum

Bearbeiten

Auch die Menge der Matrizen über einem Körper   bildet mit der Matrizenaddition und der Skalarmultiplikation einen Vektorraum. Die Standardbasis in diesem Matrizenraum wird durch die Standardmatrizen   gebildet, bei denen genau ein Eintrag gleich eins und alle anderen Einträge gleich null sind. Beispielsweise bilden die vier Matrizen

 

die Standardbasis des Raums der  -Matrizen.

Standardbasis in unendlichdimensionalen Räumen

Bearbeiten

Ist   ein Körper und   eine beliebige (insb. möglicherweise unendliche) Menge, so bilden die endlichen formalen Linearkombinationen von Elementen aus   einen Vektorraum. Dann ist   selbst Basis dieses Vektorraumes und wird als dessen Standardbasis bezeichnet.

Anstelle formaler Linearkombinationen betrachtet man auch alternativ den Vektorraum derjenigen Abbildungen   mit der Eigenschaft, dass   für fast alle   gilt. Zu   sei   die durch

 

gegebene Abbildung  . Dann bildet die Familie   eine Basis des Vektorraums, die in diesem Fall ebenfalls als die Standardbasis bezeichnet wird.

Der Vektorraum aller Abbildungen   besitzt hingegen, sofern   unendlich ist, keine Standardbasis.

Auch Polynomringe über Körpern sind Vektorräume, in denen eine Basis bereits unmittelbar aufgrund der Konstruktion ausgezeichnet ist. So sind die Elemente des Polynomringes   definitionsgemäß die endlichen Linearkombinationen der Monome         usw., die demnach eine Basis – die Standardbasis – von   bilden.

Zusammenhang mit universellen Eigenschaften

Bearbeiten

Der Begriff kanonisch wird allgemein bei Konstruktionen über eine universelle Eigenschaft verwendet. So ergibt sich auch ein Zusammenhang zwischen Standardbasen und folgender Konstruktion:

Sei   ein Körper und   eine beliebige Menge. Gesucht ist ein  -Vektorraum   zusammen mit einer Abbildung   in dessen zugrunde liegende Menge, so dass zu jedem  -Vektorraum   und jeder Abbildung   genau eine lineare Abbildung   existiert mit  . In solch einem Paar   wird dann   als kanonische Abbildung oder universelle Lösung von   bezüglich des Vergissfunktors, der jedem  -Vektorraum die zugrundeliegende Menge zuordnet, bezeichnet.

Die oben angegebenen Vektorräume mit Standardbasis haben genau diese universelle Eigenschaft. Das Bild von   unter der kanonischen Abbildung sind genau die Vektoren der kanonischen Basis bzw. die kanonische Abbildung als Familie aufgefasst ist die kanonische Basis.

Daraus, dass stets eine solche universelle Lösung existiert, folgt bereits, dass eine Abbildung, die jeder Menge   eine solche universelle Lösung   und jedem   ein solches   zuordnet, ein Funktor ist, der linksadjungiert zum Vergissfunktor ist. Ein solcher Funktor heißt freier Funktor.

Literatur

Bearbeiten
  • Kowalsky und Michler: Lineare Algebra, Gruyter, ISBN 978-3-11-017963-7
  • Albrecht Beutelspacher: „Das ist o.B.d.A. trivial!“ 9. aktualisierte Auflage, Vieweg + Teubner, Braunschweig und Wiesbaden 2009, ISBN 978-3-8348-0771-7, s. v. „Kanonisch“