From Wikipedia, the free encyclopedia
In probability theory , to obtain a nondegenerate limiting distribution for extremes of samples , it is necessary to "reduce" the actual greatest value by applying a linear transformation with coefficients that depend on the sample size.
If
X
1
,
X
2
,
…
,
X
n
{\displaystyle \ X_{1},\ X_{2},\ \dots ,\ X_{n}\ }
are independent random variables with common probability density function
P
(
X
j
=
x
)
≡
f
X
(
x
)
,
{\displaystyle \ \mathbb {P} \left(X_{j}=x\right)\equiv f_{X}(x)\ ,}
then the cumulative distribution function
F
Y
n
{\displaystyle \ F_{Y_{n}}\ }
for
Y
n
≡
max
{
X
1
,
…
,
X
n
}
{\displaystyle \ Y_{n}\equiv \max\{\ X_{1},\ \ldots ,\ X_{n}\ \}\ }
is given by the simple relation
F
Y
n
(
y
)
=
[
F
X
(
y
)
]
n
.
{\displaystyle F_{Y_{n}}(y)=\left[\ F_{X}(y)\ \right]^{n}~.}
If there is a limiting distribution for the distribution of interest, the stability postulate states that the limiting distribution must be for some sequence of transformed or "reduced" values, such as
(
a
n
Y
n
+
b
n
)
,
{\displaystyle \ \left(\ a_{n}\ Y_{n}+b_{n}\ \right)\ ,}
where
a
n
,
b
n
{\displaystyle \ a_{n},\ b_{n}\ }
may depend on n but not on x .
This equation was obtained by Maurice René Fréchet and also by Ronald Fisher .
Only three possible distributions [ edit ]
To distinguish the limiting cumulative distribution function from the "reduced" greatest value from
F
(
x
)
,
{\displaystyle \ F(x)\ ,}
we will denote it by
G
(
y
)
.
{\displaystyle \ G(y)~.}
It follows that
G
(
y
)
{\displaystyle \ G(y)\ }
must satisfy the functional equation
[
G
(
y
)
]
n
=
G
(
a
n
y
+
b
n
)
.
{\displaystyle \ \left[\ G\!\left(y\right)\ \right]^{n}=G\!\left(\ a_{n}\ y+b_{n}\ \right)~.}
Boris Vladimirovich Gnedenko has shown there are no other distributions satisfying the stability postulate other than the following three:[ 1]
Gumbel distribution for the minimum stability postulate
If
X
i
=
Gumbel
(
μ
,
β
)
{\displaystyle \ X_{i}={\textrm {Gumbel}}\left(\ \mu ,\ \beta \right)\ }
and
Y
≡
min
{
X
1
,
…
,
X
n
}
{\displaystyle \ Y\equiv \min\{\ X_{1},\ \ldots ,\ X_{n}\ \}\ }
then
Y
∼
a
n
X
+
b
n
,
{\displaystyle \ Y\sim a_{n}\ X+b_{n}\ ,}
where
a
n
=
1
{\displaystyle \ a_{n}=1\ }
and
b
n
=
β
log
n
;
{\displaystyle \ b_{n}=\beta \ \log n\ ;}
In other words,
Y
∼
Gumbel
(
μ
−
β
log
n
,
β
)
.
{\displaystyle \ Y\sim {\textsf {Gumbel}}\left(\ \mu -\beta \ \log n\ ,\ \beta \ \right)~.}
Weibull distribution (extreme value) for the maximum stability postulate
If
X
i
=
Weibull
(
μ
,
σ
)
{\displaystyle \ X_{i}={\textsf {Weibull}}\left(\ \mu ,\ \sigma \ \right)\ }
and
Y
≡
max
{
X
1
,
…
,
X
n
}
{\displaystyle \ Y\equiv \max\{\,X_{1},\ldots ,X_{n}\,\}\ }
then
Y
∼
a
n
X
+
b
n
,
{\displaystyle \ Y\sim a_{n}\ X+b_{n}\ ,}
where
a
n
=
1
{\displaystyle \ a_{n}=1\ }
and
b
n
=
σ
log
(
1
n
)
;
{\displaystyle \ b_{n}=\sigma \ \log \!\left({\tfrac {1}{n}}\right)\ ;}
In other words,
Y
∼
Weibull
(
μ
−
σ
log
(
1
n
)
,
σ
)
.
{\displaystyle \ Y\sim {\textsf {Weibull}}\left(\ \mu -\sigma \log \!\left({\tfrac {1}{n}}\ \right)\ ,\ \sigma \ \right)~.}
Fréchet distribution for the maximum stability postulate
If
X
i
=
Frechet
(
α
,
s
,
m
)
{\displaystyle \ X_{i}={\textsf {Frechet}}\left(\ \alpha ,\ s,\ m\ \right)\ }
and
Y
≡
max
{
X
1
,
…
,
X
n
}
{\displaystyle \ Y\equiv \max\{\ X_{1},\ \ldots ,\ X_{n}\ \}\ }
then
Y
∼
a
n
X
+
b
n
,
{\displaystyle \ Y\sim a_{n}\ X+b_{n}\ ,}
where
a
n
=
n
−
1
α
{\displaystyle \ a_{n}=n^{-{\tfrac {1}{\alpha }}}\ }
and
b
n
=
m
(
1
−
n
−
1
α
)
;
{\displaystyle \ b_{n}=m\left(1-n^{-{\tfrac {1}{\alpha }}}\right)\ ;}
In other words,
Y
∼
Frechet
(
α
,
n
1
α
s
,
m
)
.
{\displaystyle \ Y\sim {\textsf {Frechet}}\left(\ \alpha ,n^{\tfrac {1}{\alpha }}s\ ,\ m\ \right)~.}
^ Gnedenko, B. (1943). "Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire". Annals of Mathematics . 44 (3): 423– 453. doi :10.2307/1968974 .