Jump to content

Elementary Theory of the Category of Sets

From Wikipedia, the free encyclopedia

In mathematics, the Elementary Theory of the Category of Sets or ETCS is a set of axioms for set theory proposed by William Lawvere.[1] Although it was originally stated in the language of category theory, as Leinster pointed out, the axioms can be stated without references to category theory.

Axioms

[edit]

The real message is this: simply by writing down a few mundane, uncontroversial statements about sets and functions, we arrive at an axiomatization that reflects how sets are used in everyday mathematics.

Tom Leinster, [2]

Informally, the axioms are as follows: (here, set, function and composition of functions are primitives)[3]

  1. Composition of functions is associative and has identities.
  2. There is a set with exactly one element.
  3. There is an empty set.
  4. A function is determined by its effect on elements.
  5. A Cartesian product exists for a pair of sets.
  6. Given sets and , there is a set of all functions from to .
  7. Given and an element , the pre-image is defined.
  8. The subsets of a set correspond to the functions .
  9. The natural numbers form a set.
  10. (weak axiom of choice) Every surjection has a right inverse (i.e., a section).

The resulting theory is weaker than ZFC. If the axiom schema of replacement is added as another axiom, the resulting theory is equivalent to ZFC.[4]

References

[edit]
  1. ^ William Lawvere, An elementary theory of the category of sets , Proceedings of the National Academy of Science of the U.S.A 52 pp.1506-1511 (1964).
  2. ^ Leinster 2014, The end of the paper.
  3. ^ Leinster 2014, Figure 1.
  4. ^ Leinster 2014, p. 412.
  • Leinster, Tom (1 May 2014). "Rethinking Set Theory". The American Mathematical Monthly. doi:10.4169/amer.math.monthly.121.05.403. JSTOR 10.4169/amer.math.monthly.121.05.403.

Further reading

[edit]