Перейти до вмісту

Теорема про перетин хорд

Матеріал з Вікіпедії — вільної енциклопедії.

Теорема про відрізки хорд, або просто Теорема хорд - це твердження в елементарній геометрії, яке описує співвідношення чотирьох відрізків ліній, створених двома хордами, що перетинаються в колі. В теоремі доводиться, що добутки довжин відрізків ліній на кожній хорді рівні. Це 35 твердження з книги Начала Евкліда

Точніше, для двох хорд AC і BD, що перетинаються в точці S, виконується така рівність:

Обернене також справедливе, тобто якщо для двох відрізків прямих AC і BD, що перетинаються в точці S, виконується наведена вище рівність, тоді їх чотири кінцеві точки A, B, C і D лежать на спільному колі. Або іншими словами, якщо діагоналі чотирикутника ABCD перетинаються в точці S і виконують наведену вище рівність, то це вписаний чотирикутник .

Значення двох добутків в теоремі хорд залежить лише від відстані точки перетину S від центру кола і називається абсолютним значенням степені S, більш того, можна стверджувати, що:

де r - радіус кола, а d - відстань між центром кола і точкою перетину S. Ця властивість випливає безпосередньо із застосування теореми хорд до третьої хорди, що проходить через S і центр кола M (див. креслення).

Теорему можна довести за допомогою подібних трикутників (за допомогою теореми про вписаний кут). Розглянемо кути трикутників ASD і BSC :

(кути, які спираються на хорду AB)
(кути, які спираються на хорду CD)
(вертикальні кути)

Це означає, що трикутники ASD і BSC подібні і тому

Поряд з теоремою про січну і дотичну і теоремою про дві січні, теорема про хорди, що перетинаються представляє один з трьох основних випадків більш загальної теореми про дві прямі і коло, що перетинаються - теореми про степінь точки

Список літератури

[ред. | ред. код]

Зовнішні посилання

[ред. | ред. код]