CD63
Внешний вид
CD63 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[27][28]
Искәрмәләр
[үзгәртү | вики-текстны үзгәртү]- ↑ 1,0 1,1 UniProt
- ↑ 2,0 2,1 2,2 Kim H. C. Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein // EMBO J. — NPG, 2006. — ISSN 0261-4189; 1460-2075 — doi:10.1038/SJ.EMBOJ.7601281 — PMID:16917503
- ↑ Ivanusic D., Eschricht M., Denner J. Investigation of membrane protein-protein interactions using correlative FRET-PLA // BioTechniques — Future Science Ltd, 2014. — ISSN 0736-6205; 1940-9818 — doi:10.2144/000114215 — PMID:25312088
- ↑ Foster L. J., Hardwidge P. R., Finlay B. B. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling // Cellular Microbiology — Wiley-Blackwell, 2010. — ISSN 1462-5814; 1462-5822 — doi:10.1111/J.1462-5822.2010.01470.X — PMID:20374249
- ↑ 5,00 5,01 5,02 5,03 5,04 5,05 5,06 5,07 5,08 5,09 5,10 5,11 5,12 5,13 5,14 5,15 5,16 5,17 5,18 5,19 5,20 5,21 5,22 5,23 GOA
- ↑ Möbius W., Stoorvogel W. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M207550200 — PMID:12519789
- ↑ Riezman H., Blom T., Li S. et al. LAPTM4B facilitates late endosomal ceramide export to control cell death pathways // Nature Chemical Biology — NPG, 2015. — ISSN 1552-4450; 1552-4469 — doi:10.1038/NCHEMBIO.1889 — PMID:26280656
- ↑ 8,00 8,01 8,02 8,03 8,04 8,05 8,06 8,07 8,08 8,09 König C., Kroon J., Thijssen V. L. et al. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2013. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M113.468199 — PMID:23632027
- ↑ Fitter S. Characterisation of the mouse homologue of CD151 (PETA-3/SFA-1); genomic structure, chromosomal localisation and identification of 2 novel splice forms // Biochim. Biophys. Acta — Elsevier BV, 1998. — ISSN 0006-3002; 1878-2434 — doi:10.1016/S0167-4781(98)00034-7 — PMID:9602068
- ↑ B. Gwynn, Eicher E. M., Peters L. L. Genetic localization of Cd63, a member of the transmembrane 4 superfamily, reveals two distinct loci in the mouse genome // Genomics / A. Engel — Academic Press, Elsevier BV, 1996. — ISSN 0888-7543; 1089-8646 — doi:10.1006/GENO.1996.0375 — PMID:8661157
- ↑ 11,0 11,1 Metzelaar M. J., Wijngaard P. L., Peters P. J. et al. CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1991. — ISSN 0021-9258; 1083-351X; 1067-8816 — PMID:1993697
- ↑ 12,0 12,1 Degeest G., Coomans C., Geeraerts A. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes // Nat. Cell Biol. — NPG, 2012. — ISSN 1465-7392; 1476-4679 — doi:10.1038/NCB2502 — PMID:22660413
- ↑ 13,0 13,1 Riezman H., Blom T., Li S. et al. LAPTM4B facilitates late endosomal ceramide export to control cell death pathways // Nature Chemical Biology — NPG, 2015. — ISSN 1552-4450; 1552-4469 — doi:10.1038/NCHEMBIO.1889 — PMID:26280656
- ↑ 14,0 14,1 14,2 Raposo G., Saftig P., Niel G. v. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis // Developmental Cell — Elsevier BV, 2011. — ISSN 1534-5807; 1878-1551 — doi:10.1016/J.DEVCEL.2011.08.019 — PMID:21962903
- ↑ 15,0 15,1 15,2 GOA
- ↑ König C., Kroon J., Thijssen V. L. et al. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2013. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M113.468199 — PMID:23632027
- ↑ Raposo G., Coumailleau F., Cohen-Tannoudji M. Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment // Mol. Biol. Cell, — American Society for Cell Biology, 2004. — ISSN 1059-1524; 1939-4586; 1044-2030 — doi:10.1091/MBC.E04-04-0274 — PMID:15229288
- ↑ Sinha A., Kislinger T. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine // Proteomics / L. Stimson — Wiley, 2013. — ISSN 1615-9853; 1615-9861 — doi:10.1002/PMIC.201200561 — PMID:23533145
- ↑ Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. Briggs — American Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450 — doi:10.1681/ASN.2008040406 — PMID:19056867
- ↑ Thaysen-Andersen M., Loke I., Packer N. Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2015. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M114.631622 — PMID:25645918
- ↑ 21,0 21,1 Codina J., Li J., Dubose T. D. CD63 interacts with the carboxy terminus of the colonic H+-K+-ATPase to decrease [corrected plasma membrane localization and 86Rb+ uptake] // American Journal of Physiology: Cell Physiology — 2005. — ISSN 0363-6143; 1522-1563 — doi:10.1152/AJPCELL.00463.2004 — PMID:15647390
- ↑ 22,0 22,1 Metzelaar M. J., Wijngaard P. L., Peters P. J. et al. CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1991. — ISSN 0021-9258; 1083-351X; 1067-8816 — PMID:1993697
- ↑ 23,0 23,1 23,2 23,3 23,4 Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform. — OUP, 2011. — ISSN 1467-5463; 1477-4054 — doi:10.1093/BIB/BBR042 — PMID:21873635
- ↑ Möbius W., Stoorvogel W. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M207550200 — PMID:12519789
- ↑ Raposo G. Exosomal-like vesicles are present in human blood plasma // Int. Immunol. — OUP, 2005. — ISSN 0953-8178; 1460-2377 — doi:10.1093/INTIMM/DXH267 — PMID:15908444
- ↑ Lucocq J. M., Powis S. J. Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis // Exp. Cell. Res. — Academic Press, Elsevier BV, 2012. — ISSN 0014-4827; 1090-2422 — doi:10.1016/J.YEXCR.2012.10.006 — PMID:23092844
- ↑ HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
- ↑ UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.
Чыганаклар
[үзгәртү | вики-текстны үзгәртү]- Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
- Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)
Бу — аксым турында мәкалә төпчеге. Сез мәкаләне үзгәртеп һәм мәгълүмат өстәп, ![]() |