Przejdź do zawartości

Zmienne Mandelstama

Z Wikipedii, wolnej encyklopedii

Zmienne Mandelstamawielkości fizyczne używane w teoretycznym opisie zderzeń cząstek elementarnych. Niosą informację o względnych pędach cząstek przed i po zderzeniu, są przy tym relatywistycznie niezmiennicze, czyli ich wartości nie zależą od układu odniesienia w którym zderzenie jest obserwowane. Pierwszy raz zostały użyte do opisu zderzeń przez Stanleya Mandelstama w roku 1958[1] w pracy poświęconej teorii rozpraszania pionów na nukleonach.

Definicja

[edytuj | edytuj kod]

Przyjmijmy, że zderzają się dwie cząstki o czteropędach i i masach spoczynkowych odpowiednio i Po zderzeniu mamy dwie cząstki o czteropędach i oraz masach i Zmienne Mandelstama zdefiniowane są w tych oznaczeniach następująco:

Relatywistyczna niezmienniczość tych wielkości wynika bezpośrednio z faktu, że są one kwadratami długości czterowektorów.

Zmienna jest równa kwadratowi masy niezmienniczej układu (w układzie jednostek, w którym ). Zmienna jest kwadratem przekazu czteropędu w zderzeniu.

Zmienne Mandelstama nie są niezależne, związek pomiędzy nimi dany jest wzorem:

Uwaga: niektórzy autorzy definiują zmienne i z odwrotnymi znakami. Definicja podana powyżej jest zgodna z konwencją propagowaną przez Particle Data Group i stosowaną przez większość fizyków.

Jednoznaczność definicji

[edytuj | edytuj kod]

Jak widać z powyższej definicji, zmiana numeracji uczestniczących w zderzeniu cząstek może prowadzić do zamiany rolami zmiennych i Aby uniknąć niejednoznaczności przyjmuje się konwencyjnie, że przez 3 oznaczamy cząstkę identyczną z 1, lub, jeżeli obie cząstki w wyniku zderzenia zmieniają się na inne – cząstkę bardziej podobną do 1. Na przykład w rozpraszaniu Comptona

za cząstkę 1 uważamy foton przed zderzeniem, zaś za cząstkę 3 foton rozproszony. Natomiast w reakcji:

jeżeli za cząstkę 1 uznamy to za cząstkę 3 należy uznać neutralny pion. Tym samym zmienna będzie w tym wypadku kwadratem różnicy czteropędów pionów przed i po reakcji.

Wzory przybliżone

[edytuj | edytuj kod]

Wzór na można przekształcić do postaci:

Jeżeli energie zderzających się cząstek, mierzone w układzie środka masy, są znacznie większe od ich mas spoczynkowych, wówczas można w powyższym wzorze zaniedbać kwadraty mas, otrzymując wyrażenie przybliżone:

i analogicznie dla pozostałych zmiennych

Klasyfikacja diagramamów Feynmana

[edytuj | edytuj kod]

Zderzenie dwuciałowe (czyli takie, w którym tak w stanie początkowym, jak i końcowym, mamy dwie cząstki) można w najniższym rzędzie rachunku zaburzeń opisać przedstawionymi poniżej diagramami Feynmana.

kanał s kanał t kanał u

Zmienne Mandelstama stały się źródłem nazw nadanych poszczególnym diagramom. I tak, w zderzeniu przebiegającym według schematu opisywanego przez pierwszy z diagramów cząstki 1 i 2 łączą się, tworząc wirtualną cząstkę o masie która rozpada się następnie na końcowe produkty zderzenia. Ten schemat nazywany jest kanałem s reakcji.

Reakcja w kanale t przebiega w taki sposób, że pomiędzy zderzającymi się cząstkami wymieniana jest cząstka wirtualna. W wyniku oddziaływania z nią cząstka 1 zamienia się w 3, zaś 2 w 4. Kwadrat czteropędu wymienianej cząstki wirtualnej wynosi w tej sytuacji

Kanał u jest podobny do kanału t, z tym, że w wyniku emisji lub pochłonięcia cząstki wirtualnej, cząstka 1 zmienia się w 4, zaś 2 w 3. Kwadrat czteropędu wymienianej cząstki wynosi wtedy

Przypisy

[edytuj | edytuj kod]
  1. Stanley Mandelstam. Determination of the Pion-Nucleon Scattering Amplitude from Dispersion Relations and Unitarity. General Theory. „Phys. Rev.”. 112 (1958). s. 1344–1360. DOI: 10.1103/PhysRev.112.1344. (ang.).  Tekst pracy. Mandelstam w tej pracy stosował zmienne i uzupełniająca zestaw zmienna została wprowadzona później.

Bibliografia

[edytuj | edytuj kod]