Przejdź do zawartości

Szereg Laurenta

Z Wikipedii, wolnej encyklopedii
Obszar zbieżności szeregu Laurenta.

Szereg Laurenta funkcji zespolonej to reprezentacja tej funkcji w postaci szeregu potęgowego, w którym występują również składniki o wykładniku ujemnym. Rozwinięcia tego używa się, gdy funkcji nie można rozwinąć w szereg Taylora. Nazwa szeregu pochodzi od nazwiska Pierre Alphonse Laurenta, który opublikował go w 1843 roku.

Ogólny wzór

[edytuj | edytuj kod]

Jeżeli funkcję możemy zapisać jako sumę funkcji oraz takich że można je rozwinąć w zbieżne szeregi na pewnym obszarze D:

(część regularna)
(część osobliwa)

gdzie c - dowolnie wybrana, stała liczba zespolona, zwana środkiem szeregu, to funkcję przedstawiamy w postaci[1]:

Reprezentację taką nazywamy szeregiem Laurenta funkcji Część regularna jest zbieżna w kole a część osobliwa na zewnątrz koła gdzie

Szereg Laurenta jest zbieżny w pierścieniu Jeżeli funkcja jest analityczna w tym pierścieniu, to daje się przedstawić w postaci szeregu Laurenta a współczynniki wyrażają się, za pomocą całki krzywoliniowej wzorem

gdzie jest dowolną krzywą zamkniętą położoną w obszarze zbieżności i zorientowaną dodatnio względem swego wnętrza (obiegającą punkt jednokrotnie w kierunku przeciwnym do ruchu wskazówek zegara).

Przykład rozwinięcia w szereg Laurenta

[edytuj | edytuj kod]

Korzystamy z rozwinięcia w szereg funkcji eksponencjalnej:

Pierwsze trzy składniki stanowią część regularną szeregu, kolejne składają się na część osobliwą.

Przypisy

[edytuj | edytuj kod]
  1. szereg Laurenta, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-10].

Linki zewnętrzne

[edytuj | edytuj kod]