Naar inhoud springen

Z-transformatie

Uit Wikipedia, de vrije encyclopedie

De Z-transformatie is een wiskundige techniek die wordt gebruikt voor het oplossen van differentievergelijkingen. Dit zijn vergelijkingen die met name aan de orde zijn bij tijd-discrete processen. De Z-transformatie is het discrete analogon van de Laplace-transformatie voor continue functies.

Zij een rij reële getallen. De Z-getransformeerde van deze rij is de Laurentreeks in de formele (complexe) variabele z:

.

Deze vorm wordt wel de eenzijdige Z-transformatie genoemd ter onderscheiding van de tweezijdige vorm, gedefinieerd voor rijen   zonder begin, door:

.

De Z-getransformeerde van de rij wordt meestal genoteerd als:

,

wat strikt genomen niet correct is, maar wat het mogelijk maakt de algemene term van de reeks in de notatie te gebruiken. Afhankelijk van de vorm waarin de reeks wordt weergegeven, zien we dan bijvoorbeeld:

,

of:

.

We bepalen de Z-getransformeerde van de meetkundige reeks:

, voor n=0,1,2, ...

De Z-getransformeerde van deze reeks is:

.

De getransformeerde A(z) is enkel convergent als |z|>|r| (deze voorwaarde is onder andere ook noodzakelijk om de gesloten vorm te mogen afleiden).

  • Lineariteit: als dan is
  • Verschuiving: als dan is
  • Convolutie. De Z-getransformeerde van een convolutie van twee signalen is het product van de Z-getransformeerden van die twee signalen:
  • Differentiëren.