Uit Wikipedia, de vrije encyclopedie
In de complexe functietheorie, een deelgebied van de wiskunde, is Kleins -invariant, een modulaire functie van een complexe variabele , gedefinieerd op het bovenhalfvlak van de complexe getallen, die een belangrijke rol speelt in de theorie van elliptische functies en modulaire vormen. Het is de basisvorm waarvan andere modulaire functies als rationale functies zijn afgeleid.
Zij het bovenhalfvlak, dan is voor de -invariant gedefinieerd als:
- ,
waarin de zogenaamde modulaire discriminant is, met
- en
veelvouden van de eisenstein-reeksen voor het rooster