Jump to content

July 2000 lunar eclipse

From Wikipedia, the free encyclopedia

July 2000 lunar eclipse
Total eclipse
Hourly motion shown right to left
DateJuly 16, 2000
Gamma0.0302
Magnitude1.7684
Saros cycle129 (37 of 71)
Totality106 minutes, 25 seconds
Partiality236 minutes, 2 seconds
Penumbral374 minutes, 31 seconds
Contacts (UTC)
P110:48:22
U111:57:35
U213:02:23
Greatest13:55:35
U314:48:47
U415:53:55
P417:02:46

A total lunar eclipse occurred at the Moon’s descending node of orbit on Sunday, July 16, 2000,[1] with an umbral magnitude of 1.7684. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.1 days after apogee (on July 15, 2000, at 11:30 UTC), the Moon's apparent diameter was smaller.[2]

Totality lasted for 106 minutes and 25 seconds, the longest duration since 13 August 1859 (106 minutes and 28 seconds) and 3 May 459 (106 minutes and 32 seconds), and totality of this length won't occur again until 19 August 4753 (106 minutes and 35 seconds). This was the last and longest total lunar eclipse of the 20th century as well as the second longest and last of the second millennium. It was also the eighth longest total lunar eclipse on EclipseWise's Six Millennium Catalog of Lunar Eclipses which covers the years 3000 BCE to 3000 AD. The longest total lunar eclipse between the years 4000 BCE and 6000 CE took place on 31 May 318. Totality lasted 106 minutes and 36 seconds which is only 11 seconds longer than this one.[3]

Visibility

[edit]

The eclipse was completely visible over Australia, Antarctica, and much of the Pacific Ocean, seen rising over Asia and eastern Africa and setting over western North and South America.[4]


The Moon passed straight through the center of the Earth's shadow at the descending node in Sagittarius of its orbit.

Eclipse details

[edit]

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]

July 16, 2000 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.83749
Umbral Magnitude 1.76839
Gamma 0.03015
Sun Right Ascension 07h44m54.7s
Sun Declination +21°15'02.4"
Sun Semi-Diameter 15'44.2"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 19h44m54.2s
Moon Declination -21°13'24.9"
Moon Semi-Diameter 14'43.2"
Moon Equatorial Horizontal Parallax 0°54'01.2"
ΔT 64.0 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of July 2000
July 1
Ascending node (new moon)
July 16
Descending node (full moon)
July 31
Ascending node (new moon)
Partial solar eclipse
Solar Saros 117
Total lunar eclipse
Lunar Saros 129
Partial solar eclipse
Solar Saros 155
[edit]

Eclipses in 2000

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Lunar Saros 129

[edit]

Inex

[edit]

Triad

[edit]

Lunar eclipses of 1998–2002

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The penumbral lunar eclipses on March 13, 1998 and September 6, 1998 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on May 26, 2002 and November 20, 2002 occur in the next lunar year eclipse set.

Lunar eclipse series sets from 1998 to 2002
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
109 1998 Aug 08
Penumbral
1.4876 114 1999 Jan 31
Penumbral
−1.0190
119 1999 Jul 28
Partial
0.7863 124
2000 Jan 21
Total
−0.2957
129 2000 Jul 16
Total
0.0302 134
2001 Jan 09
Total
0.3720
139 2001 Jul 05
Partial
−0.7287 144 2001 Dec 30
Penumbral
1.0732
149 2002 Jun 24
Penumbral
−1.4440

Saros 129

[edit]

This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 1351. It contains partial eclipses from September 26, 1531 through May 11, 1892; total eclipses from May 24, 1910 through September 8, 2090; and a second set of partial eclipses from September 20, 2108 through April 26, 2469. The series ends at member 71 as a penumbral eclipse on July 24, 2613.

The longest duration of totality was produced by member 37 at 106 minutes, 24 seconds on July 16, 2000. All eclipses in this series occur at the Moon’s descending node of orbit.[7]

Greatest First

The greatest eclipse of the series occurred on 2000 Jul 16, lasting 106 minutes, 24 seconds.[8]
Penumbral Partial Total Central
1351 Jun 10
1531 Sep 26
1910 May 24
1946 Jun 14
Last
Central Total Partial Penumbral
2036 Aug 07
2090 Sep 08
2469 Apr 26
2613 Jul 24

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1804 Jan 26
(Saros 111)
1814 Dec 26
(Saros 112)
1825 Nov 25
(Saros 113)
1836 Oct 24
(Saros 114)
1847 Sep 24
(Saros 115)
1858 Aug 24
(Saros 116)
1869 Jul 23
(Saros 117)
1880 Jun 22
(Saros 118)
1891 May 23
(Saros 119)
1902 Apr 22
(Saros 120)
1913 Mar 22
(Saros 121)
1924 Feb 20
(Saros 122)
1935 Jan 19
(Saros 123)
1945 Dec 19
(Saros 124)
1956 Nov 18
(Saros 125)
1967 Oct 18
(Saros 126)
1978 Sep 16
(Saros 127)
1989 Aug 17
(Saros 128)
2000 Jul 16
(Saros 129)
2011 Jun 15
(Saros 130)
2022 May 16
(Saros 131)
2033 Apr 14
(Saros 132)
2044 Mar 13
(Saros 133)
2055 Feb 11
(Saros 134)
2066 Jan 11
(Saros 135)
2076 Dec 10
(Saros 136)
2087 Nov 10
(Saros 137)
2098 Oct 10
(Saros 138)
2109 Sep 09
(Saros 139)
2120 Aug 09
(Saros 140)
2131 Jul 10
(Saros 141)
2142 Jun 08
(Saros 142)
2153 May 08
(Saros 143)
2164 Apr 07
(Saros 144)
2175 Mar 07
(Saros 145)
2186 Feb 04
(Saros 146)
2197 Jan 04
(Saros 147)

Inex series

[edit]

The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.

This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 40.

All events in this series shown (from 1000 to 2500) are central total lunar eclipses.

Inex series from 1000–2500 AD
Descending node Ascending node Descending node Ascending node
Saros Date Saros Date Saros Date Saros Date
95 1016 May 24 96 1045 May 3 97 1074 Apr 14 98 1103 Mar 25
99 1132 Mar 3 100 1161 Feb 12 101 1190 Jan 23 102 1219 Jan 2
103 1247 Dec 13 104 1276 Nov 23 105 1305 Nov 2 106 1334 Oct 13
107 1363 Sep 23 108 1392 Sep 2 109 1421 Aug 13 110 1450 Jul 24
111 1479 Jul 4 112 1508 Jun 13
113 1537 May 24 114 1566 May 4
115 1595 Apr 24 116 1624 Apr 3 117 1653 Mar 14 118 1682 Feb 21
119 1711 Feb 3 120 1740 Jan 13 121 1768 Dec 23 122 1797 Dec 4
123 1826 Nov 14 124 1855 Oct 25 125 1884 Oct 4 126 1913 Sep 15
127 1942 Aug 26
128 1971 Aug 6
129 2000 Jul 16
130 2029 Jun 26
131 2058 Jun 6
132 2087 May 17
133 2116 Apr 27 134 2145 Apr 7
135 2174 Mar 18 136 2203 Feb 26 137 2232 Feb 7 138 2261 Jan 17
139 2289 Dec 27 140 2318 Dec 9 141 2347 Nov 19 142 2376 Oct 28
143 2405 Oct 8 144 2434 Sep 18 145 2463 Aug 29 146 2492 Aug 8

Half-Saros cycle

[edit]

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[9] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.

July 11, 1991 July 22, 2009

See also

[edit]

Notes

[edit]
  1. ^ "July 16–17, 2000 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 12 November 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 12 November 2024.
  3. ^ EclipseWise – Six Millennium Catalog of Lunar Eclipses
  4. ^ "Total Lunar Eclipse of 2000 Jul 16" (PDF). NASA. Retrieved 12 November 2024.
  5. ^ "Total Lunar Eclipse of 2000 Jul 16". EclipseWise.com. Retrieved 12 November 2024.
  6. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. ^ "NASA - Catalog of Lunar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.
  8. ^ Listing of Eclipses of series 129
  9. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
[edit]