Jump to content

300 (number)

From Wikipedia, the free encyclopedia
(Redirected from 375 (number))
← 299 300 301 →
Cardinalthree hundred
Ordinal300th
(three hundredth)
Factorization22 × 3 × 52
Greek numeralΤ´
Roman numeralCCC
Binary1001011002
Ternary1020103
Senary12206
Octal4548
Duodecimal21012
Hexadecimal12C16
Hebrewש
ArmenianՅ
Babylonian cuneiform𒐙
Egyptian hieroglyph𓍤

300 (three hundred) is the natural number following 299 and preceding 301.

In Mathematics

[edit]

300 is a composite number.

Integers from 301 to 399

[edit]

300s

[edit]

301

[edit]

302

[edit]

303

[edit]

304

[edit]

305

[edit]

306

[edit]

307

[edit]

308

[edit]

309

[edit]

310s

[edit]

310

[edit]

311

[edit]

312

[edit]

313

[edit]

314

[edit]

315

[edit]

315 = 32 × 5 × 7 = , rencontres number, highly composite odd number, having 12 divisors.[1]

316

[edit]

316 = 22 × 79, a centered triangular number[2] and a centered heptagonal number.[3]

317

[edit]

317 is a prime number, Eisenstein prime with no imaginary part, Chen prime,[4] one of the rare primes to be both right and left-truncatable,[5] and a strictly non-palindromic number.

317 is the exponent (and number of ones) in the fourth base-10 repunit prime.[6]

318

[edit]

319

[edit]

319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109), Smith number,[7] cannot be represented as the sum of fewer than 19 fourth powers, happy number in base 10[8]

320s

[edit]

320

[edit]

320 = 26 × 5 = (25) × (2 × 5). 320 is a Leyland number,[9] and maximum determinant of a 10 by 10 matrix of zeros and ones.

321

[edit]

321 = 3 × 107, a Delannoy number[10]

322

[edit]

322 = 2 × 7 × 23. 322 is a sphenic,[11] nontotient, untouchable,[12] and a Lucas number.[13] It is also the first unprimeable number to end in 2.

323

[edit]

323 = 17 × 19. 323 is the sum of nine consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), the sum of the 13 consecutive primes (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), Motzkin number.[14] A Lucas and Fibonacci pseudoprime. See 323 (disambiguation)

324

[edit]

324 = 22 × 34 = 182. 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,[15] and an untouchable number.[12]

325

[edit]

325 = 52 × 13. 325 is a triangular number, hexagonal number,[16] nonagonal number,[17] and a centered nonagonal number.[18] 325 is the smallest number to be the sum of two squares in 3 different ways: 12 + 182, 62 + 172 and 102 + 152. 325 is also the smallest (and only known) 3-hyperperfect number.[19][20]

326

[edit]

326 = 2 × 163. 326 is a nontotient, noncototient,[21] and an untouchable number.[12] 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number[22]

327

[edit]

327 = 3 × 109. 327 is a perfect totient number,[23] number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing[24]

328

[edit]

328 = 23 × 41. 328 is a refactorable number,[25] and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).

329

[edit]

329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and a highly cototient number.[26]

330s

[edit]

330

[edit]

330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67), pentatope number (and hence a binomial coefficient ), a pentagonal number,[27] divisible by the number of primes below it, and a sparsely totient number.[28]

331

[edit]

331 is a prime number, super-prime, cuban prime,[29] a lucky prime,[30] sum of five consecutive primes (59 + 61 + 67 + 71 + 73), centered pentagonal number,[31] centered hexagonal number,[32] and Mertens function returns 0.[33]

332

[edit]

332 = 22 × 83, Mertens function returns 0.[33]

333

[edit]

333 = 32 × 37, Mertens function returns 0;[33] repdigit; 2333 is the smallest power of two greater than a googol.

334

[edit]

334 = 2 × 167, nontotient.[34]

335

[edit]

335 = 5 × 67. 335 is divisible by the number of primes below it, number of Lyndon words of length 12.

336

[edit]

336 = 24 × 3 × 7, untouchable number,[12] number of partitions of 41 into prime parts,[35] largely composite number.[36]

337

[edit]

337, prime number, emirp, permutable prime with 373 and 733, Chen prime,[4] star number

338

[edit]

338 = 2 × 132, nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.[37]

339

[edit]

339 = 3 × 113, Ulam number[38]

340s

[edit]

340

[edit]

340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of 4 (41 + 42 + 43 + 44), divisible by the number of primes below it, nontotient, noncototient.[21] Number of regions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares (sequence A331452 in the OEIS) and (sequence A255011 in the OEIS).

341

[edit]

341 = 11 × 31, sum of seven consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61), octagonal number,[39] centered cube number,[40] super-Poulet number. 341 is the smallest Fermat pseudoprime; it is the least composite odd modulus m greater than the base b, that satisfies the Fermat property "bm−1 − 1 is divisible by m", for bases up to 128 of b = 2, 15, 60, 63, 78, and 108.

342

[edit]

342 = 2 × 32 × 19, pronic number,[41] Untouchable number.[12]

343

[edit]

343 = 73, the first nice Friedman number that is composite since 343 = (3 + 4)3. It is the only known example of x2+x+1 = y3, in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3.

344

[edit]

344 = 23 × 43, octahedral number,[42] noncototient,[21] totient sum of the first 33 integers, refactorable number.[25]

345

[edit]

345 = 3 × 5 × 23, sphenic number,[11] idoneal number

346

[edit]

346 = 2 × 173, Smith number,[7] noncototient.[21]

347

[edit]

347 is a prime number, emirp, safe prime,[43] Eisenstein prime with no imaginary part, Chen prime,[4] Friedman prime since 347 = 73 + 4, twin prime with 349, and a strictly non-palindromic number.

348

[edit]

348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97), refactorable number.[25]

349

[edit]

349, prime number, twin prime, lucky prime, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.[44]

350s

[edit]

350

[edit]

350 = 2 × 52 × 7 = , primitive semiperfect number,[45] divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.

351

[edit]

351 = 33 × 13, triangular number, sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member of Padovan sequence[46] and number of compositions of 15 into distinct parts.[47]

352

[edit]

352 = 25 × 11, the number of n-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number[22]

353

[edit]

354

[edit]

354 = 2 × 3 × 59 = 14 + 24 + 34 + 44,[48][49] sphenic number,[11] nontotient, also SMTP code meaning start of mail input. It is also sum of absolute value of the coefficients of Conway's polynomial.

355

[edit]

355 = 5 × 71, Smith number,[7] Mertens function returns 0,[33] divisible by the number of primes below it.[50] The cototient of 355 is 75,[51] where 75 is the product of its digits (3 x 5 x 5 = 75).

The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known as Milü and provides an extremely accurate approximation for pi, being accurate to seven digits.

356

[edit]

356 = 22 × 89, Mertens function returns 0.[33]

357

[edit]

357 = 3 × 7 × 17, sphenic number.[11]

358

[edit]

358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,[33] number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.[52]

359

[edit]

360s

[edit]

360

[edit]

361

[edit]

361 = 192. 361 is a centered triangular number,[2] centered octagonal number, centered decagonal number,[53] member of the Mian–Chowla sequence;[54] also the number of positions on a standard 19 x 19 Go board.

362

[edit]

362 = 2 × 181 = σ2(19): sum of squares of divisors of 19,[55] Mertens function returns 0,[33] nontotient, noncototient.[21]

363

[edit]

364

[edit]

364 = 22 × 7 × 13, tetrahedral number,[56] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[33] nontotient. It is a repdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zero tetrahedral number.[56]

365

[edit]

366

[edit]

366 = 2 × 3 × 61, sphenic number,[11] Mertens function returns 0,[33] noncototient,[21] number of complete partitions of 20,[57] 26-gonal and 123-gonal. Also the number of days in a leap year.

367

[edit]

367 is a prime number, a lucky prime,[30] Perrin number,[58] happy number, prime index prime and a strictly non-palindromic number.

368

[edit]

368 = 24 × 23. It is also a Leyland number.[9]

369

[edit]

370s

[edit]

370

[edit]

370 = 2 × 5 × 37, sphenic number,[11] sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted, Base 10 Armstrong number since 33 + 73 + 03 = 370.

371

[edit]

371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor,[59] the next such composite number is 2935561623745, Armstrong number since 33 + 73 + 13 = 371.

372

[edit]

372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), noncototient,[21] untouchable number,[12] --> refactorable number.[25]

373

[edit]

373, prime number, balanced prime,[60] one of the rare primes to be both right and left-truncatable (two-sided prime),[5] sum of five consecutive primes (67 + 71 + 73 + 79 + 83), sexy prime with 367 and 379, permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114.

374

[edit]

374 = 2 × 11 × 17, sphenic number,[11] nontotient, 3744 + 1 is prime.[61]

375

[edit]

375 = 3 × 53, number of regions in regular 11-gon with all diagonals drawn.[62]

376

[edit]

376 = 23 × 47, pentagonal number,[27] 1-automorphic number,[63] nontotient, refactorable number.[25] There is a math puzzle in which when 376 is squared, 376 is also the last three digits, as 376 * 376 = 141376 [64] It is one of the two three-digit numbers where when squared, the last three digits remain the same.

377

[edit]

377 = 13 × 29, Fibonacci number, a centered octahedral number,[65] a Lucas and Fibonacci pseudoprime, the sum of the squares of the first six primes.

378

[edit]

378 = 2 × 33 × 7, triangular number, cake number, hexagonal number,[16] Smith number.[7]

379

[edit]

379 is a prime number, Chen prime,[4] lazy caterer number[22] and a happy number in base 10. It is the sum of the first 15 odd primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.

380s

[edit]

380

[edit]

380 = 22 × 5 × 19, pronic number,[41] number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.[66]

381

[edit]

381 = 3 × 127, palindromic in base 2 and base 8.

381 is the sum of the first 16 prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).

382

[edit]

382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.[7]

383

[edit]

383, prime number, safe prime,[43] Woodall prime,[67] Thabit number, Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.[68] 4383 - 3383 is prime.

384

[edit]

385

[edit]

385 = 5 × 7 × 11, sphenic number,[11] square pyramidal number,[69] the number of integer partitions of 18.

385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12

386

[edit]

386 = 2 × 193, nontotient, noncototient,[21] centered heptagonal number,[3] number of surface points on a cube with edge-length 9.[70]

387

[edit]

387 = 32 × 43, number of graphical partitions of 22.[71]

388

[edit]

388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,[72] number of uniform rooted trees with 10 nodes.[73]

389

[edit]

389, prime number, emirp, Eisenstein prime with no imaginary part, Chen prime,[4] highly cototient number,[26] strictly non-palindromic number. Smallest conductor of a rank 2 Elliptic curve.

390s

[edit]

390

[edit]

390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,

is prime[74]

391

[edit]

391 = 17 × 23, Smith number,[7] centered pentagonal number.[31]

392

[edit]

392 = 23 × 72, Achilles number.

393

[edit]

393 = 3 × 131, Blum integer, Mertens function returns 0.[33]

394

[edit]

394 = 2 × 197 = S5 a Schröder number,[75] nontotient, noncototient.[21]

395

[edit]

395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.[76]

396

[edit]

396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,[25] Harshad number, digit-reassembly number.

397

[edit]

397, prime number, cuban prime,[29] centered hexagonal number.[32]

398

[edit]

398 = 2 × 199, nontotient.

is prime[74]

399

[edit]

399 = 3 × 7 × 19, sphenic number,[11] smallest Lucas–Carmichael number, and a Leyland number of the second kind[77] (). 399! + 1 is prime.

References

[edit]
  1. ^ Sloane, N. J. A. (ed.). "Sequence A053624 (Highly composite odd numbers (1): where d(n) increases to a record)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ a b Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ a b Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A109611 (Chen primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ a b Sloane, N. J. A. (ed.). "Sequence A020994 (Primes that are both left-truncatable and right-truncatable)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ Guy, Richard; Unsolved Problems in Number Theory, p. 7 ISBN 1475717385
  7. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Sloane, N. J. A. (ed.). "Sequence A007770 (Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ a b Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A001850 (Central Delannoy numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A007304 (Sphenic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A005114 (Untouchable numbers, also called nonaliquot numbers: impossible values for the sum of aliquot parts function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A000032 (Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A000290 (The squares: a(n) = n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ a b Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ Sloane, N. J. A. (ed.). "Sequence A060544 (Centered 9-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A034897 (Hyperperfect numbers: x such that x = 1 + k*(sigma(x)-x-1) for some k > 0)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A007594 (Smallest n-hyperperfect number: m such that m=n(sigma(m)-m-1)+1; or 0 if no such number exists)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A005278 (Noncototients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^ a b c Sloane, N. J. A. (ed.). "Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A033950 (Refactorable numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^ a b Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ a b Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  28. ^ Sloane, N. J. A. (ed.). "Sequence A036913 (Sparsely totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. ^ a b Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  30. ^ a b Sloane, N. J. A. (ed.). "Sequence A031157 (Numbers that are both lucky and prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  31. ^ a b Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  32. ^ a b Sloane, N. J. A. (ed.). "Sequence A003215 (Hex numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  33. ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers n such that Mertens' function is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^ Sloane, N. J. A. (ed.). "Sequence A003052 (Self numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^ Sloane, N. J. A. (ed.). "Sequence A000607 (Number of partitions of n into prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  36. ^ Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^ Sloane, N. J. A. (ed.). "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  38. ^ Sloane, N. J. A. (ed.). "Sequence A002858 (Ulam numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  39. ^ Sloane, N. J. A. (ed.). "Sequence A000567 (Octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  40. ^ Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  41. ^ a b Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  42. ^ Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  43. ^ a b Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^ Sloane, N. J. A. (ed.). "Sequence A059802 (Numbers k such that 5^k - 4^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  45. ^ Sloane, N. J. A. (ed.). "Sequence A006036 (Primitive pseudoperfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  46. ^ Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  47. ^ Sloane, N. J. A. (ed.). "Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  48. ^ Sloane, N. J. A. (ed.). "Sequence A000538 (Sum of fourth powers: 0^4 + 1^4 + ... + n^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  49. ^ Sloane, N. J. A. (ed.). "Sequence A031971 (a(n) = Sum_{k=1..n} k^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  50. ^ "A057809 - OEIS". oeis.org. Retrieved 2024-11-19.
  51. ^ "A051953 - OEIS". oeis.org. Retrieved 2024-11-19.
  52. ^ Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  53. ^ Sloane, N. J. A. (ed.). "Sequence A062786 (Centered 10-gonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  54. ^ Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  55. ^ Sloane, N. J. A. (ed.). "Sequence A001157 (a(n) = sigma_2(n): sum of squares of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  56. ^ a b Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers (or triangular pyramidal))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  57. ^ Sloane, N. J. A. (ed.). "Sequence A126796 (Number of complete partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  58. ^ Sloane, N. J. A. (ed.). "Sequence A001608 (Perrin sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  59. ^ Sloane, N. J. A. (ed.). "Sequence A055233 (Composite numbers equal to the sum of the primes from their smallest prime factor to their largest prime factor)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  60. ^ Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  61. ^ Sloane, N. J. A. (ed.). "Sequence A000068 (Numbers k such that k^4 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  62. ^ Sloane, N. J. A. (ed.). "Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  63. ^ Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  64. ^ "Algebra COW Puzzle - Solution". Archived from the original on 2023-10-19. Retrieved 2023-09-21.
  65. ^ Sloane, N. J. A. (ed.). "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  66. ^ Sloane, N. J. A. (ed.). "Sequence A306302 (Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  67. ^ Sloane, N. J. A. (ed.). "Sequence A050918 (Woodall primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  68. ^ Sloane, N. J. A. (ed.). "Sequence A072385 (Primes which can be represented as the sum of a prime and its reverse)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  69. ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  70. ^ Sloane, N. J. A. (ed.). "Sequence A005897 (a(n) = 6*n^2 + 2 for n > 0, a(0)=1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  71. ^ Sloane, N. J. A. (ed.). "Sequence A000569 (Number of graphical partitions of 2n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  72. ^ Sloane, N. J. A. (ed.). "Sequence A084192 (Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  73. ^ Sloane, N. J. A. (ed.). "Sequence A317712 (Number of uniform rooted trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  74. ^ a b Sloane, N. J. A. (ed.). "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  75. ^ Sloane, N. J. A. (ed.). "Sequence A006318 (Large Schröder numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  76. ^ Sloane, N. J. A. (ed.). "Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  77. ^ Sloane, N. J. A. (ed.). "Sequence A045575 (Leyland numbers of the second kind)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.