2011 JY31
Discovery[1][2] | |
---|---|
Discovered by | New Horizons KBO Search |
Discovery site | Las Campanas Obs. |
Discovery date | 4 May 2011 |
Designations | |
2011 JY31 | |
VNH0008[3][4] | |
TNO[5] · cubewano[6] distant[1] · binary[7] | |
Orbital characteristics[5] | |
Epoch 1 July 2021 (JD 2459396.5) | |
Uncertainty parameter 4 | |
Observation arc | 7.4 yr[4] |
Earliest precovery date | 28 April 2011 |
Aphelion | 47.183 AU |
Perihelion | 41.518 AU |
44.350 AU | |
Eccentricity | 0.06387 |
295.36 yr (107,881 d) | |
318.400° | |
0° 0m 12.013s / day | |
Inclination | 2.602° |
231.356° | |
105.231° | |
Physical characteristics | |
54–68 km (component)[8] | |
Mass | ~1.7×1017 kg[8] |
Mean density | 0.5–1.0 g/cm3 [8] |
46.62±0.06 h[7][8] | |
61.40°±1.35° (wrt orbit)[7] 61.34°±1.34° (wrt ICRF pole)[7] | |
0.147 (geometric)[9] 0.036 (Bond)[9] | |
V–I=1.25±0.19[10] | |
24.7[10] | |
8.1±0.2[4] 8.8[5][1] | |
2011 JY31 is a binary trans-Neptunian object from the Kuiper belt, located in the outermost region of the Solar System. It is a cold classical Kuiper belt object. 2011 JY31 was discovered on 4 May 2011, by a team of astronomers using one of the Magellan Telescopes in Chile during the New Horizons KBO Search for a potential flyby target for the New Horizons spacecraft.[2] Distant observations by New Horizons from September 2018 revealed its binary nature, showing two 68 km (42 mi)-wide components in a tight, mutual orbit 200 km (120 mi) apart.[8]
Numbering and naming
[edit]This minor planet has not been numbered by the Minor Planet Center and remains unnamed.[1]
Physical parameters
[edit]High resolution observation by the New Horizons spacecraft made it possible to estimate the parameters of the binary orbit and the system mass. Assuming that the orbit is circular the period is 46.62±0.06 h, semimajor axis is 198.6±2.9 km and the system mass is about 1.7×1017 kg. The components are approximately equal in size and are approximately 68 km in size assuming density of 0.5 kg/cm3.[8]
The discovery adds support to streaming instability as the dominant mechanism in the formation of tight and contact binary planetesimals such as 486958 Arrokoth, which appear to be prevalent in the cold classical Kuiper belt population.[11][12][7]
See also
[edit]- 2014 OS393, another tight binary KBO observed by New Horizons
- List of New Horizons topics
References
[edit]- ^ a b c d "2011 JY31". Minor Planet Center. International Astronomical Union. Retrieved 11 November 2021.
- ^ a b Tholen, D. J.; Buie, M. W.; Trilling, D.; Spencer, J.; Borncamp, D. M.; Osip, D. J.; Kavelaars, J.; Fuentes, C. I.; Schechter, P. L.; McLeod, B. A.; Conroy, M.; Parker, A. H.; Sheppard, S. S.; Williams, G. V. (11 December 2012). "MPEC 2012-X60 : 2011 JY31". Minor Planet Electronic Circular. 2012-X60. Minor Planet Center. Bibcode:2012MPEC....X...60T. Retrieved 13 November 2021.
- ^ Benecchi, Susan (October 2011). "Orbital Refinement and Characterization of New Horizons KBO candidates – HST Proposal 12535". Mikulski Archive for Space Telescopes. Space Telescopes Science Institute: 12535. Bibcode:2011hst..prop12535B. Retrieved 13 November 2021.
- ^ a b c Porter, Simon B.; Spencer, John R.; Verbiscer, Anne J.; Benecchi, Susan; Weaver, Hal A.; Wen Lin, Hsing; et al. (January 2022). "Orbits and Occultation Opportunities of 15 TNOs Observed by New Horizons". The Planetary Science Journal. 3 (1): 19. Bibcode:2022PSJ.....3...23P. doi:10.3847/PSJ/ac3491.
- ^ a b c "JPL Small-Body Database Browser: (2011 JY31)" (2016-06-30 last obs.). Jet Propulsion Laboratory. Retrieved 11 November 2021.
- ^ Johnston, Wm. Robert (29 August 2021). "List of Known Trans-Neptunian Objects". Johnston's Archive. Retrieved 11 November 2021.
- ^ a b c d e Weaver, H. A.; Porter, S. B.; Spencer, J. R.; et al. (February 2022). "High Resolution Search for KBO Binaries from New Horizons". The Planetary Science Journal. 3 (46): 17. arXiv:2201.05940. Bibcode:2022PSJ.....3...46W. doi:10.3847/PSJ/ac4cb7. S2CID 247088149.
- ^ a b c d e f Weaver, H. A.; Porter, S. B.; Spencer, J. R. (1 February 2022). "High-resolution Search for Kuiper Belt Object Binaries from New Horizons". The Planetary Science Journal. 3 (2): 46. Bibcode:2022PSJ.....3...46W. doi:10.3847/PSJ/ac4cb7.
- ^ a b Verbiscer, Anne J.; Porter, Simon; Benecchi, Susan D.; Kavelaars, J. J.; Weaver, Harold A.; Spencer, John R.; et al. (September 2019). "Phase Curves from the Kuiper Belt: Photometric Properties of Distant Kuiper Belt Objects Observed by New Horizons". The Astronomical Journal. 158 (3): 17. arXiv:1405.7181. Bibcode:2019AJ....158..123V. doi:10.3847/1538-3881/ab3211. S2CID 202150415. 123.
- ^ a b Benecchi, S. D.; Noll, K. S.; Weaver, H. A.; Spencer, J. R.; Stern, S. A.; Buie, M. W.; Parker, A. H. (January 2015). "New Horizons: Long-range Kuiper Belt targets observed by the Hubble Space Telescope". Icarus. 246: 369–374. arXiv:1405.7181. Bibcode:2015Icar..246..369B. doi:10.1016/j.icarus.2014.04.014. hdl:2060/20150011460. S2CID 119239605.
- ^ Weaver, Harold; Porter, Simon; Spencer, John (October 2021). Discovery of Tight Binaries in the Kuiper Belt by New Horizons LORRI. 53rd Annual DPS Meeting. Vol. 53. American Astronomical Society. Bibcode:2021DPS....5330707W. 307.07.
- ^ Dickinson, David (8 October 2021). "New Horizons Discovers Kuiper Belt "Twins"". Sky & Telescope. Retrieved 13 November 2021.
External links
[edit]- DPS 53 Wednesday Press Conference (Tight Twins in the Kuiper Belt presentation by Hal Weaver), AAS Press Office, YouTube, 6 October 2021
- DPS 53: Days 3, 4, and 5, Kerry Hensley, AAS Nova, 9 October 2021
- List of Transneptunian Objects, Minor Planet Center
- 2011 JY31 at AstDyS-2, Asteroids—Dynamic Site
- 2011 JY31 at the JPL Small-Body Database