Jump to content

2011 JY31

From Wikipedia, the free encyclopedia

2011 JY31
2011 JY31 imaged by the New Horizons spacecraft on 9 September 2018
Discovery[1][2]
Discovered byNew Horizons KBO Search
Discovery siteLas Campanas Obs.
Discovery date4 May 2011
Designations
2011 JY31
VNH0008[3][4]
TNO[5] · cubewano[6]
distant[1] · binary[7]
Orbital characteristics[5]
Epoch 1 July 2021 (JD 2459396.5)
Uncertainty parameter 4
Observation arc7.4 yr[4]
Earliest precovery date28 April 2011
Aphelion47.183 AU
Perihelion41.518 AU
44.350 AU
Eccentricity0.06387
295.36 yr (107,881 d)
318.400°
0° 0m 12.013s / day
Inclination2.602°
231.356°
105.231°
Physical characteristics
54–68 km (component)[8]
Mass~1.7×1017 kg[8]
Mean density
0.5–1.0 g/cm3 [8]
46.62±0.06 h[7][8]
61.40°±1.35° (wrt orbit)[7]
61.34°±1.34° (wrt ICRF pole)[7]
0.147 (geometric)[9]
0.036 (Bond)[9]
V–I=1.25±0.19[10]
24.7[10]
8.1±0.2[4]
8.8[5][1]

2011 JY31 is a binary trans-Neptunian object from the Kuiper belt, located in the outermost region of the Solar System. It is a cold classical Kuiper belt object. 2011 JY31 was discovered on 4 May 2011, by a team of astronomers using one of the Magellan Telescopes in Chile during the New Horizons KBO Search for a potential flyby target for the New Horizons spacecraft.[2] Distant observations by New Horizons from September 2018 revealed its binary nature, showing two 68 km (42 mi)-wide components in a tight, mutual orbit 200 km (120 mi) apart.[8]

Numbering and naming

[edit]

This minor planet has not been numbered by the Minor Planet Center and remains unnamed.[1]

Physical parameters

[edit]
Collage of New Horizons images of 2011 JY31 from September 2018. A model point spread function (red) is overlayed and subtracted from the image, which reveals the two components of the 2011 JY31 system.
Comparison of orbital separations and diameters of trans-Neptunian close binaries

High resolution observation by the New Horizons spacecraft made it possible to estimate the parameters of the binary orbit and the system mass. Assuming that the orbit is circular the period is 46.62±0.06 h, semimajor axis is 198.6±2.9 km and the system mass is about 1.7×1017 kg. The components are approximately equal in size and are approximately 68 km in size assuming density of 0.5 kg/cm3.[8]

The discovery adds support to streaming instability as the dominant mechanism in the formation of tight and contact binary planetesimals such as 486958 Arrokoth, which appear to be prevalent in the cold classical Kuiper belt population.[11][12][7]

See also

[edit]

References

[edit]
  1. ^ a b c d "2011 JY31". Minor Planet Center. International Astronomical Union. Retrieved 11 November 2021.
  2. ^ a b Tholen, D. J.; Buie, M. W.; Trilling, D.; Spencer, J.; Borncamp, D. M.; Osip, D. J.; Kavelaars, J.; Fuentes, C. I.; Schechter, P. L.; McLeod, B. A.; Conroy, M.; Parker, A. H.; Sheppard, S. S.; Williams, G. V. (11 December 2012). "MPEC 2012-X60 : 2011 JY31". Minor Planet Electronic Circular. 2012-X60. Minor Planet Center. Bibcode:2012MPEC....X...60T. Retrieved 13 November 2021.
  3. ^ Benecchi, Susan (October 2011). "Orbital Refinement and Characterization of New Horizons KBO candidates – HST Proposal 12535". Mikulski Archive for Space Telescopes. Space Telescopes Science Institute: 12535. Bibcode:2011hst..prop12535B. Retrieved 13 November 2021.
  4. ^ a b c Porter, Simon B.; Spencer, John R.; Verbiscer, Anne J.; Benecchi, Susan; Weaver, Hal A.; Wen Lin, Hsing; et al. (January 2022). "Orbits and Occultation Opportunities of 15 TNOs Observed by New Horizons". The Planetary Science Journal. 3 (1): 19. Bibcode:2022PSJ.....3...23P. doi:10.3847/PSJ/ac3491.
  5. ^ a b c "JPL Small-Body Database Browser: (2011 JY31)" (2016-06-30 last obs.). Jet Propulsion Laboratory. Retrieved 11 November 2021.
  6. ^ Johnston, Wm. Robert (29 August 2021). "List of Known Trans-Neptunian Objects". Johnston's Archive. Retrieved 11 November 2021.
  7. ^ a b c d e Weaver, H. A.; Porter, S. B.; Spencer, J. R.; et al. (February 2022). "High Resolution Search for KBO Binaries from New Horizons". The Planetary Science Journal. 3 (46): 17. arXiv:2201.05940. Bibcode:2022PSJ.....3...46W. doi:10.3847/PSJ/ac4cb7. S2CID 247088149.
  8. ^ a b c d e f Weaver, H. A.; Porter, S. B.; Spencer, J. R. (1 February 2022). "High-resolution Search for Kuiper Belt Object Binaries from New Horizons". The Planetary Science Journal. 3 (2): 46. Bibcode:2022PSJ.....3...46W. doi:10.3847/PSJ/ac4cb7.
  9. ^ a b Verbiscer, Anne J.; Porter, Simon; Benecchi, Susan D.; Kavelaars, J. J.; Weaver, Harold A.; Spencer, John R.; et al. (September 2019). "Phase Curves from the Kuiper Belt: Photometric Properties of Distant Kuiper Belt Objects Observed by New Horizons". The Astronomical Journal. 158 (3): 17. arXiv:1405.7181. Bibcode:2019AJ....158..123V. doi:10.3847/1538-3881/ab3211. S2CID 202150415. 123.
  10. ^ a b Benecchi, S. D.; Noll, K. S.; Weaver, H. A.; Spencer, J. R.; Stern, S. A.; Buie, M. W.; Parker, A. H. (January 2015). "New Horizons: Long-range Kuiper Belt targets observed by the Hubble Space Telescope". Icarus. 246: 369–374. arXiv:1405.7181. Bibcode:2015Icar..246..369B. doi:10.1016/j.icarus.2014.04.014. hdl:2060/20150011460. S2CID 119239605.
  11. ^ Weaver, Harold; Porter, Simon; Spencer, John (October 2021). Discovery of Tight Binaries in the Kuiper Belt by New Horizons LORRI. 53rd Annual DPS Meeting. Vol. 53. American Astronomical Society. Bibcode:2021DPS....5330707W. 307.07.
  12. ^ Dickinson, David (8 October 2021). "New Horizons Discovers Kuiper Belt "Twins"". Sky & Telescope. Retrieved 13 November 2021.
[edit]