Ugrás a tartalomhoz

Bode-diagram

Ellenőrzött
A Wikipédiából, a szabad enciklopédiából
Másodfokú aluláteresztő szűrő Bode-diagramja
Fölül az amplitúdó karakterisztika, alul a fázismenet
(kirajzolva MATLABbal)

A Bode-diagram a rendszerelmélet, irányítástechnika, jelfeldolgozás és hálózatszámítás területén elterjedten használt grafikon, mely egy egy bemenetű, egy kimenetű rendszer átviteli karakterisztikájának ábrázolására szolgál. A diagram részét alkotó két részdiagram az átviteli karakterisztika amplitúdóját illetve fázisát ábrázolja a frekvencia függvényében.

A diagram nagy előnye más módszerekkel (például Nyquist-diagram) szemben, hogy a frekvenciát és az amplitúdót logaritmikus skálán ábrázolja, így nagy átfogást biztosít. Ez egyben lehetővé teszi, hogy a valós rendszerekben gyakran előforduló, racionális törtfüggvény alakú átviteli karakterisztikák esetén kézzel is viszonylag könnyű közelítő diagramokat rajzolni. A diagram névadója, Hendrik Wade Bode amerikai mérnök az 1930-as években alkalmazta először.

A Bode-diagram felépítése

[szerkesztés]

A Bode-diagramot komplex értékű, egyváltozós függvény, az átviteli karakterisztika ábrázolására használják. Ehhez a komplex szám exponenciális alakját használja fel:

Ahol az a nemnegatív valós szám z abszolútértéke, a valós φ pedig z árkusza. A komplex értékű H(jω)[1] átviteli karakterisztikát is felírhatjuk

alakban. Bode az a(ω) és a φ(ω) függvényt ábrázolta két diagramon:

  • Az amplitúdókarakterisztika az átviteli karakterisztika abszolút értékének frekvenciafüggését mutatja be, a vízszintes tengelyen a frekvenciát, a függőlegesen az amplitúdót ábrázolva.
A körfrekvencia-tengely logaritmikus léptékű, de a lineáris egységben megadott körfrekvencia értékeket kell feltüntetni rajta. A tengelyen két körfrekvencia távolságát, melyek közül az egyik a másik 10-szerese, dekádnak nevezzük, kétszeres frekvenciák távolságát oktávnak. Az amplitúdóskála szintén logaritmikus léptékű, itt azonban a feltüntetett értékek is logaritmikus egységben, decibelben szerepelnek.
  • A fáziskarakterisztika az átviteli karakterisztika árkuszának (szögének) függvényét tünteti fel. A körfrekvencia-tengely itt is logaritmikus léptékű, a fázisszöget azonban lineáris skálán kell ábrázolni (fokban vagy radiánban kifejezve).

A Bode-diagramban a két részdiagramot egymás fölött helyezik el úgy, hogy a vízszintes (körfrekvencia) tengely a két diagramon fedésben legyen.

A diagram közelítő felrajzolása

[szerkesztés]

Valós pólus vagy zérus hatása

[szerkesztés]
Elsőfokú aluláteresztő karakterisztika számított(Δ) és közelítő értéke

A közelítő (aszimptotikus, töréspontos) ábrázolás abból a meggondolásból indul ki, hogy egy

alakú kifejezés (ahol a zérusfrekvencia, a törésponti körfrekvencia) nagy frekvenciákon -vel, kis frekvenciákon pedig 1-gyel () közelíthető. Mivel a két közelítő egyenes épp -nál metszik egymást, a törtvonalas közelítés amplitúdómenete felrajzolható úgy, hogy kis frekvenciáktól a törésponti frekvenciáig 0 dB-nél halad, majd innentől abszolút értékének megfelelő egyenessel, 20 dB/dekáddal emelkedik. A fázis közelítésénél jól látható, hogy kis frekvenciáknál 0-val, nagy frekvenciáknál 90°-kal (pozitív ) vagy -90°-kal (negatív ) számolhatunk. A törésponti érték pedig . Az átmeneti tartományt a törésponti frekvencia tizede és tízszerese között szokták meghatározni,[2] az említett határoknál már 0° illetve 90° közelítést alkalmazva. Ez mindössze

hibát okoz.

Pólust tartalmazó tag esetén hasonló a helyzet, ekkor a

alakú, egypólusú rendszer átviteli karakterisztikája az előbb tárgyalténak a reciproka. Ezért az amplitúdómenet az előbbi reciproka lesz, vagyis a törésponti frekvencia után -20 dB/dekáddal csökkenő egyenest kell rajzolni. A fázismenetben a reciprok képzés miatt a fázis a -1-szeresére változik, előjelet vált.[3] Megjegyzendő, hogy stabil rendszerekben nem lehet pozitív a pólusfrekvencia,[4] ezért stabil rendszereknél mindig pozitív.

Konjugált zérus- illetve póluspárok

[szerkesztés]

Egy nevezőjében másodfokú, számlálójában nulladfokú átviteli karakterisztika általános alakja

ahol a másodfokú pólusfrekvencia, (zeta) a csillapítási tényező (a jósági tényező reciproka).[2] esetén a függvénynek két valós pólusa van, esetén két konjugált komplex pólusa. A karakterisztika abszolút értéke és fázisa

illetve

Az átviteli karakterisztika közelítő értéke esetén[5]

Vagyis törtvonalas közelítés esetén kis frekvenciákon az amplitúdókarakterisztikát a 0 dB-s aszimptotájával, a fáziskarakterisztikát a 0°-os aszimptotával közelíthetjük, nagy frekvencián az ponton átmenő, -40 dB/dekád meredekségű egyenessel illetve -180°-kal becsülhető a karakterisztika. A fázis átmeneti tartománya és között egy , pontokon áthaladó egyenessel közelíthető.[5]

Mint a táblázat is mutatja, az átmeneti tartományban a másodfokú átviteli karakterisztika amplitúdója a csillapítási tényező függvényében nagymértékben eltérhet az aszimptotától.

Másodfokú számlálóval rendelkező átviteli karakterisztika fáziskarakterisztikája valamint amplitúdókarakterisztikája decibelben a fent vázolt karakterisztikák mínusz egyszerese.

Többtényezős átviteli karakterisztika eredője

[szerkesztés]

Általános esetben az átviteli karakterisztika

alakban írható fel. A logaritmus azonosságok miatt

Ezen kívül

Vagyis az n tényező szorzataként előálló átviteli karakterisztika mind az amplitúdó- mind a fáziskarakterisztikája a tényezők karakterisztikájának összege.

Diszkrét idejű rendszerek

[szerkesztés]

A diszkrét idejű rendszerek átviteli karakterisztikáját tipikusan nem az eredeti Bode-diagramon ábrázolják, de hasonló diagramokat használnak ezen a területen is. Az amplitúdókarakterisztikát és a fáziskarakterisztikát lineáris frekvenciatengellyel ábrázolják, további különbség, hogy az amplitúdót az esetek egy részében szintén lineáris egységben tüntetik fel.[6]

Mivel e rendszerek átviteli karakterisztikája általában -ben (TS a mintavételi periódusidő) és nem -ben racionális törtfüggvény, az átviteli karakterisztika periodikus jellegéből következően ωS=2π/TS többszöröseivel eltolva ismétlődik. Elég tehát csak az ω∈[0, ωS] intervallumon[7] ábrázolni.[6]

A Bode-diagram egyik fő előnyére, a nagy átfogásra itt nincs szükség, mert mintavételezett rendszerekben mivel a mintavételi frekvenciát a számítási igény csökkentése érdekében célszerű minimális szinten tartani, így a rendszerek körfrekvencia-tartománya viszonylag jól kitölti a [0, ωS] intervallumot, a lineáris felbontás itt megfelelő. Emellett egyszerű felrajzolásának előnye is elveszik ebben a környezetben épp amiatt, mert az átviteli karakterisztika nem racionális törtfüggvénye. Lineáris körfrekvencia-tengely és logaritmikus amplitúdótengely esetén lenne lehetőség a fentebb vázolt tört vonalas közelítés alkalmazására. Egyéb praktikus megfontolások is ebbe az irányba mutatnak. Egy rendszer analíziséhez gyakran használják a diszkrét Fourier-transzformációt, aminek a frekvenciabeli felbontása lineáris léptékben állandó, ωS/N (N a felhasznált minták száma).

Jegyzetek

[szerkesztés]
  1. vagy H(f)
  2. a b Fodor, i. m. 199. o.
  3. Fodor, i. m. 198. o.
  4. Fodor, i. m. 306. o.
  5. a b Fodor, i. m. 200. o.
  6. a b Fodor, i. m. 539-541. o.
  7. Valós impulzusválaszú rendszereknél elég az f∈[0, ωS/2] intervallumon, mert páros függvény

Források

[szerkesztés]

Fodor György. Hálózatok és rendszerek. Műegyetem Kiadó (2004). ISBN 963 420 810 X