לדלג לתוכן

תבנית:עץ מיון של חבורות אלגבריות

מתוך ויקיפדיה, האנציקלופדיה החופשית
עץ מיון של חבורות אלגבריות
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
מקרא
מחלקה של חבורות אלגבריות או חבורה אלגברית בודדות; שם התואר "אלגברית/אלגברי" מושמט בדרך כלל.
מחלקה חשובה בתורת החבורות האלגבריות.
מחלקה שמכוסה על ידי תתי-המחלקות שלה המופיעות בתרשים, אם שדה ההגדה סגור אלגברית.
מחלקה המהווה חיתוך של המחלקות שמכילות אותה ומופיעות בתרשים.
מסלול שיורד למטה מצביע על כך שהמחלקה התחתונה היא חלק מהמחלקה העליונה
 
איזוגניה
חבורה בודדת
סידרה של חבורות
מחלקה של חבורות המהווה סידרה אחת עם שדה ההגדרה סגור אלגברית.
משפחה חד-פרמטרית של חבורת
קבוצה דיסקרטית של חבורות
משפחה רחבה יותר של חבורות
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
פשוטת הקשר
פשוטת הקשר


 
 
 
 
 
 
 
פשוטת הקשר
פשוטת הקשר


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


הערות שוליים

[עריכת קוד מקור]
  1. ^ כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה. עם זאת אנו דורשים שהחבורה תהיה קומוטטיבית, דרישה זו נובעת מהפרויקיטיביות/שלמות עבור חבורות קשירות, אך לא במקרה הכללי.
  2. ^ 1 2 3 כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה.
  3. ^ למושג "חבורה קלאסית" יש מספר משמעויות מקובלות. כל המשפחות שמופעות בדיאגרמה כאן תחת "חבורה קלאסית" נחשבות לכאלה על פי כל המשמעוית המוקובלות
  4. ^ כאן אנו מתייחסים למוסכמה המרחיבה, לפיה אין דרישה שהחבורה תהיה קשירה. עם זאת, מעל שדה ממציין 0, חבורה אוניפוטנטית היא תמיד קשירהפשוטת קשר), גם אם לא דרשים זאת בהגדרה.
  5. ^ לעיתים מושג זה נקרא "חבורה פשוטה".
  6. ^ כאן אנו משתמשים במוסכמה המצמצמת, שדורשת מחבורה פשוטה להיות חסרת מרכז. המושג ללא דרישה זו נקרא כאן "חבורה כמעט פשוטה".