מתוך ויקיפדיה, האנציקלופדיה החופשית
בתאוריה האנליטית של שברים משולבים, נוסחת אוילר לשברים משולבים היא זהות מתמטית, הקושרת סכומים סופיים של מכפלות עם שברים משולבים מוכללים. הנוסחה מאפשרת להציג טורים אינסופיים מסוימים כשבר משולב. נוסחה זו היא הבסיס להוכחות מודרניות רבות של התכנסות של שברים משולבים.
אוילר הציג את הזהות במקור כמניפולציה מתמטית המאפשרת להציג סכומים סופיים של מכפלות כשבר משולב סופי:
קל להוכיח את הזהות באמצעות אינדוקציה על , ולפיכך הזהות ישימה בגבול; אם הביטוי באגף שמאל מורחב ומייצג טור אינסופי מתכנס, הביטוי באגף ימין ייצג שבר משולב אינסופי מתכנס.
פונקציית האקספוננט ניתנת להצגה כפיתוח לטור אינסופי:
היישום של זהות אוילר הוא מיידי:
שבר משולב זה שקול לשבר המשולב הבא:
מהצבת מתקבלת ההצגה המפורסמת של e כשבר משולב אינסופי שאינו מחזורי: