Aller au contenu

Polydiméthylsiloxane

Un article de Wikipédia, l'encyclopédie libre.

Polydiméthylsiloxane


Structure du polydiméthylsiloxane
Identification
Nom UICPA poly(diméthylsiloxane)
Synonymes

diméthicone
PDMS

No CAS 63148-62-9
No ECHA 100.126.442
Code ATC P03AX05
No E E900
Propriétés chimiques
Formule (C2H6OSi)n
Propriétés physiques
Paramètre de solubilité δ 14,9 à 15,6 J1/2·cm-3/2[1]
Propriétés optiques
Indice de réfraction 1,40[2],[3]
Précautions
SGH[4]

Attention
H316, H320, H401 et P305+P351+P338

Unités du SI et CNTP, sauf indication contraire.

Le polydiméthylsiloxane —[O-Si(CH3)2]n—, ou poly(diméthylsiloxane) selon la nomenclature systématique, communément appelé PDMS ou diméthicone, est un polymère organominéral de la famille des siloxanes. L'amodiméthicone est un dérivé du diméthicone.

Utilisations

[modifier | modifier le code]

La chaîne de poly(diméthylsiloxane) forme la structure de base des huiles et des caoutchoucs silicone[5].

Souvent présent dans les shampoings, le PDMS est un conditionneur capillaire qui contribue à augmenter le volume des cheveux.

Le polydiméthylsiloxane est « l'ingrédient secret » composant 2 % du Kinetik Sand, ou sable cinétique[6], ce qui lui offre une texture à la fois pâte à modeler, éponge et sable.

Le polydiméthylsiloxane est un composant de la colle Pattex multi[7].

Le polydiméthylsiloxane est un additif alimentaire (E900), utilisé comme antimoussant dans les boissons (Coca-Cola BlāK).

Il est utilisé dans l'huile de friture Risso Elite (Cargill) comme agent antimoussant, notamment dans les chaînes de restauration rapide[8].

Ce polymère est également essentiel dans certaines applications de microfluidiques.

Lutte anti-poux

[modifier | modifier le code]

Le diméthicone (ainsi que le cyclodiméthicone) est employé pour lutter contre les poux, en visant à boucher les stigmates respiratoires des poux et des lentes, et provoquant leur asphyxie et leur mort. Il n'y a pas de résistance observée pour le moment[9], ces shampooings anti-poux permettent aussi d'éviter des produits neurotoxiques nuisibles pour la santé humaine, comme le DDT, le lindane et le malathion.

Toxicologie

[modifier | modifier le code]

Les fabricants de mastics et d'autres élastomères de silicone ont longtemps utilisé des catalyseurs à base d'étain (molécules de la famille des dibutylétains, classés parmi les organoétains dans ce cas) pour la réticulation (ou de polycondensation) du silicone. Mais ces produits se sont avérés être toxiques et écotoxiques[10].
La famille des dibutylétains a été classée reprotoxique et mutagène (dont dans toute l'Union européenne), ce qui conduit à rechercher des alternatives à ce catalyseur et à travailler à l'étude de leurs éventuels effets environnementaux et sanitaires. Or la dégradation physico-chimique et biologique des silicones était très mal connue[10].

Certains silicones (utilisés pour les joints dans les cuisines et salles de bain par exemple) sont volontairement rendus toxiques pour les algues, bactéries et champignons (qui peuvent être favorisés dans ces contextes humides et riches en nutriments pour les bactéries et microchampignons).

Dégradation et biodégradation

[modifier | modifier le code]

Au début des années 2010, deux types d’élastomères simplifiés, réticulés par trois catalyseurs de polycondensation (un dibutylétain servant de référence et deux candidats aux alternatives) ont été étudiés par B. Laubie[10].
Il a montré[10] que le silicone du commerce se dégrade en deux étapes successives, comparables à celles que l'on observe en fin de vie de silicones fluides (du type polydiméthylsiloxane) :

  1. le processus commence avec une hydrolyse chimique des chaînes siloxane. Cette hydrolyse forme notamment des oligosiloxanols (et principalement le monomère diméthylsilanediol) et des méthylsiloxanes cycliques (tels que l’octaméthylcyclotétrasiloxane D4)[10] ;
  2. ces sous-produits d’hydrolyse sont biodégradés ; ils peuvent l'être tant en aérobiose qu’en anaérobiose[10].

Les catalyseurs utilisés pour la polycondensation lors de la fabrication du silicone jouent aussi un rôle dans les mécanismes de dégradation, en modifiant la vitesse de l'hydrolyse et en ayant une influence sur la nature des siloxanes relargués[10]. Laubie a aussi montré que les catalyseurs qu'il a testés ont eu des effets très différents sur la biodégradation du silicone qu'ils ont rétifié :

  • les catalyseurs organométalliques testés sont assimilables par certains micro-organismes comme source primaire de carbone[10] ;
  • le catalyseur organique qu'il a testé (dérivé de guanidine) perturbe les métabolismes des micro-organismes[10].

Les composés biodégradables (y compris ceux qui sont très peu mobiles en phase aqueuse) restent biodisponibles dans les élastomères en fin de vie ; et ils influent sur la diversité des communautés bactériennes qui vont biodégrader ces produits. Un Fusarium (champignon microscopique) s'est avéré être capable de métaboliser l'une des nouvelles molécules proposées comme catalyseurs alternatifs aux dibutylétains reprotoxiques et mutagènes[10].

Propriétés physico-chimiques

[modifier | modifier le code]

Viscosité et densité

[modifier | modifier le code]

La viscosité du PDMS dépend de sa masse molaire. Selon son degré de polymérisation, il peut être aussi liquide que l'eau ou sous forme de gomme. Sa densité augmente aussi en fonction de sa masse molaire[11].

Notes et références

[modifier | modifier le code]
  1. (en) Jozef Bicerano, Prediction of polymer properties, New York, Marcel Dekker, , 3e éd., 746 p. (ISBN 0-8247-0821-0), p. 196
  2. A. Picot et J. Ducret, « Fiche résumée toxico écotoxico chimique FRTEC no 21 » [PDF], sur www.atctoxicologie.fr, Paris, Association toxicologie-chimie (ATC),
  3. « Optical constants of (C2H6OSi)n (Polydimethylsiloxane, PDMS) », sur refractiveindex.info
  4. « Fiche de données de sécurité », sur ftp.mern.gouv.qc.ca, (consulté le )
  5. Traité des matériaux, Introduction à la science des matériaux, 3e éd., 1999, PPUR, p. 95, 96 (ISBN 2-88074-402-4), présentation en ligne, lire en ligne.
  6. « Revue du Web #49 : les vidéos de la semaine / Techniques de l'Ingénieur », sur Techniques de l'Ingénieur (consulté le ).
  7. http://mymsds.henkel.com/mymsds/0006.1810620.3250.fr.MSDS_UT_FR.17604601.0.FR.pdf
  8. « McDonald's Food Facts: Ingredients », McDonald's Restaurants of Canada Limited, , p. 13
  9. « Poux de tête : diméticone et peigne fin en premiers choix », sur www.prescrire.org (consulté le )
  10. a b c d e f g h i et j Laubie Baptiste, Dégradation bio-physico-chimique des élastomères silicones : Influence du catalyseur de polycondensation et impacts environnementaux, thèse de doctorat en Environnement & chimie, 24 octobre 2012, INSA Lyon-Laboratoire de génie civil et d'ingénierie environnementale (LGCIE), Villeurbanne, résumé
  11. Tadao Kataoka et Shigeyuki Ueda, Viscosity–molecular weight relationship for polydimethylsiloxane, mai 1966, Journal of polymer science part B: Polymer letters, volume 4, issue 5. Accessible en ligne

Articles connexes

[modifier | modifier le code]

Bibliographie

[modifier | modifier le code]
  • Laubie Baptiste, Dégradation bio-physico-chimique des élastomères silicones : Influence du catalyseur de polycondensation et impacts environnementaux, thèse de doctorat en Environnement & chimie, , INSA Lyon-Laboratoire de génie civil et d'ingénierie environnementale (LGCIE), Villeurbanne, résumé.