Alkeishiukkanen
Tähän artikkeliin tai osioon ei ole merkitty lähteitä, joten tiedot kannattaa tarkistaa muista tietolähteistä. Voit auttaa Wikipediaa lisäämällä artikkeliin tarkistettavissa olevia lähteitä ja merkitsemällä ne ohjeen mukaan. Tarkennus: Keskeinen artikkeli, jossa valitettavasti on vain muutama viite. |
Alkeishiukkanen on hiukkasfysiikassa hiukkanen, jolla ei ole omaa sisäistä rakennetta[1] eikä se siis koostu muista hiukkasista.
Yksi hiukkasfysiikan suurimpia haasteita on löytää kaikki alkeellisimmat hiukkaset - alkeishiukkaset, jotka muodostavat kaikki muut luonnon hiukkaset, eivätkä itse ole muodostuneet pienemmistä hiukkasista.
Esimerkiksi atomit muodostuvat pienistä hiukkasista, jotka tunnetaan elektronina, protonina ja neutronina. Protoni ja neutroni puolestaan koostuvat vielä alkeellisemmista hiukkasista, ylös- ja alaskvarkeista. Gluonit (bosoni) taas sitovat kvarkit protoneiksi ja neutroneiksi. Siten protonia ja neutronia ei voi määritellä alkeishiukkaseksi, toisin kuin elektronin, jolla ei tiedetä olevan pienemmistä hiukkasista koostuvaa rakennetta; elektroni on itsessään alkeishiukkanen (leptoni).
Standardimallin mukaan alkeishiukkasia ovat leptonit, kvarkit ja bosonit. Bosonit jaetaan edelleen mittabosoneihin (välittäjähiukkasiin) ja Higgsin bosoniin. Leptonit ja kvarkit ovat fermioneita, eli ns. materiaalihiukkasia ja mittabosonit ymmärretään perusvuorovaikutusten välittäjähiukkasina. Bosonit erottaa fermioneista spin-luku, joka on bosoneilla kokonaisluku ja fermioneilla puoliluku.
Standardimallin mukaiset alkeishiukkaset
[muokkaa | muokkaa wikitekstiä]Leptonit
[muokkaa | muokkaa wikitekstiä]Leptoneihin kuuluvat tutun elektronin ja neutriinoiden lisäksi samantapaiset mutta raskaammat hiukkaset myoni ja tau. Kullakin näistä on lisäksi antihiukkasensa, positroni, antimyoni, antitau ja antineutriinot. Neutriinojen mahdollisten antihiukkasten olemassaolosta ei vielä olla varmoja. Nykyään tiedetään, että neutriinoilla on pieni lepomassa.
Kvarkit
[muokkaa | muokkaa wikitekstiä]Kvarkkeja on kuutta lajia, kuten leptoneitakin, antikvarkit mukaan luettuna kaksitoista. Kuusi kvarkkia ovat (suluissa vaihtoehtoisia nimiä):
- ylöskvarkki (u-kvarkki, up-kvarkki)
- alaskvarkki (d-kvarkki, down-kvarkki)
- lumokvarkki (c-kvarkki, charm-kvarkki)
- outokvarkki (s-kvarkki, strange-kvarkki)
- huippukvarkki (t-kvarkki, truth- tai top-kvarkki, tosi-kvarkki)
- pohjakvarkki (b-kvarkki, beauty- tai bottom-kvarkki, kaunis-kvarkki)
Hadronit ovat useamman kvarkin yhdistelmiä. Kolmesta kvarkista muodostunutta hadronia kutsutaan baryoniksi ja kahdesta kvarkista muodostunutta hadronia kutsutaan mesoniksi. Tunnetuimmat hadronit ovat protoni (kaksi ylöskvarkkia ja yksi alaskvarkki) ja neutroni (yksi ylöskvarkki ja kaksi alaskvarkkia).
Kvarkit kuuluvat fermioneihin.
Mittabosonit
[muokkaa | muokkaa wikitekstiä]Mittabosonit välittävät perusvuorovaikutuksia eli sähkömagneettista vuorovaikutusta (fotoni), heikkoa vuorovaikutusta (W- ja Z-bosonit), vahvaa vuorovaikutusta (gluonit) ja gravitaatiota (hypoteettinen gravitoni).
Fotoni
[muokkaa | muokkaa wikitekstiä]Fotoni välittää sähkömagneettista vuorovaikutusta, vaikka fotoni onkin itse sähköisesti neutraali. Sähkömagneettisen vuorovaikutuksen tuntevat ainoastaan sähkövaraukselliset hiukkaset, kuten elektroni.
Gluoni
[muokkaa | muokkaa wikitekstiä]Gluoni välittää vahvaa vuorovaikutusta, jonka tuntee ainoastaan värivaratut hiukkaset, eli kvarkit ja gluonit itse. Tämä vuorovaikutus sitoo kvarkkeja hadroneiksi, kuten protoniksi ja neutroniksi, jotka koostuvat ylös- ja alaskvarkeista.
W- ja Z-bosoni
[muokkaa | muokkaa wikitekstiä]W- ja Z-bosonit välittävät heikkoa vuorovaikutusta, joka aiheuttaa radioaktiivisuuden, tästä esimerkkinä beetasäteily. Heikon vuorovaikutuksen tuntevat leptonit ja kvarkit.
Gravitoni
[muokkaa | muokkaa wikitekstiä]Perusvuorovaikutuksiin kuuluu myös massallisiin hiukkasiin vaikuttava gravitaatio, mutta hiukkasfysiikan standardimalli ei ota kantaa sen olemassaoloon, sillä sitä välittävää hiukkasta, gravitonia, ei ole vielä löydetty. Toisaalta gravitaatio on voimana niin heikko muihin vuorovaikutuksiin nähden, että se voidaan hiukkasfysiikassa jättää huomioimatta.
Hypoteettiset subatomiset hiukkaset
[muokkaa | muokkaa wikitekstiä]Supersymmetristen teorioiden ennustamat
[muokkaa | muokkaa wikitekstiä]Supersymmetriset teoriat ennustavat myös joidenkin hiukkasten olemassoloa. Yhtään niistä ei kuitenkaan oltu vielä vuoteen 2007 mennessä löydetty.
- Neutraliino (spin-½) on superpositio eräistä neutraaleista standardimallin superpartnerihiukkasista. Neutraliino on hyvä ehdokas pimeän aineen hiukkaseksi. Varattujen bosonien superpartnereista muodostuneita hiukkasia kutsutaan vastaavasti chargiinoiksi.
- Fotiino (spin-½) on nimitys fotonin epäfysikaaliselle superpartnerille.
- Gravitiino (spin-3⁄2) on gravitoni-bosonin superpartneri supergravitaatioteorioissa.
- Sleptonit ja skvarkit (spin-0) ovat Standardimallin fermionien supersymmetrisiä partnereita.
Muiden teorioiden ennustamat
[muokkaa | muokkaa wikitekstiä]Muut teoriat ennustavat muun muassa seuraavanlaisia hiukkasia.
- Gravitonin (spin-2) arvellaan välittävän gravitaatiota kvanttigravitaatioteorioissa.
- Graviskalaari (spin-0) ja gravifotoni (spin-1).
- Aksioni (spin-0) on pseudoskalaari hiukkanen, joka esiintyy Peccei-Quinn-teoriassa vahvan CP-ongelman ratkaisemiseksi.
- Saksioni (spin-0, skalaari, R-pariteetti=1) ja aksiino (spin-1/2, R-pariteetti = −1) muodostavat yhdessä aksionin kanssa supermultipletin Peccei-Quinn-teorian supersymmetrisessä laajennuksessa.
- X-bosoni, anti-X-bosoni, Y-bosoni ja anti-Y-bosoni ovat hiukkasia, jotka jotkin suuret yhtenäisteoriat ennustavat.
- Magneettinen fotoni.
- Steriileitä neutriinoita tarvitaan joissakin standardimallien laajennuksissa. Niitä tarvittaneen LSND-tulosten selittämiseksi.
- Peilihiukkasten olemassaolon ennustavat teoriat, jotka säilyttävät pariteettisymmetrian.
- Magneettinen monopoli on hiukkanen, jolla on nollasta eroava magneettinen varaus. Eräät suuret yhtenäisteoriat ennustavat niiden olemassaolon.
- Takyoni on hypoteettinen hiukkanen, joka kulkee valoa nopeammin ja jolla on imaginaarinen lepomassa.
- Preoniksi sanotaan hypoteettisia kvarkkien, leptonien ja mittabosonien sisäisiä alkeishiukkasia, mutta hiukkaskiihdytimissä ei ole todistettu niiden olemassaoloa.
- Säikeeksi sanotaan hypoteettisia kvarkkien, leptonien ja bosonien sisäisiä alkeishiukkasia, jotka eivät ole pistemäisiä. Hiukkaskiihdytimissä ei ole todistettu niiden olemassaoloa.
Alkeishiukkasten tutkiminen
[muokkaa | muokkaa wikitekstiä]Alkeishiukkasten tuottaminen
[muokkaa | muokkaa wikitekstiä]Elektronit ovat alkeishiukkasista helpoimmin keinotekoisesti tuotettavissa, sillä niitä voidaan tuottaa yksinkertaisesti lämmittämällä metallia ja asettamalla positiivisesti varautunut pinta tämän lähelle, jolloin metallista emittoituneet elektronit kiitävät sähkökentän vaikutuksesta kohti positiivista kohtiota. Muiden alkeishiukkasten tuottaminen ja havaitseminen onkin hankalampaa. Aikaa ennen hiukkaskiihdyttimiä alkeishiukkasia voitiin havaita tutkimalla kosmista säteilyä, mistä alkeishiukkasfysiikka varsinaisesti sai alkunsa. Positroni, myoni ja pioni löydettiin ensimmäisen kerran vuosina 1930–1940 kosmisesta säteilystä.[2] Myöhemmin alkeishiukkasia voitiin havaita myös ydinreaktoreissa radioaktiivisten ydinten hajotessa, esimerkiksi beetasäteilyn yhteydessä elektroneja ja positroneja sekä gammasäteilyn yhteydessä fotoneja.[3]
Nykyään alkeishiukkasten tuottamista varten on rakennettu hiukkaskiihdyttimiä, joissa kiihdytetään korkeaenergiaisia hiukkasia mm. magneettien avulla. Hiukkaskiihdyttimien avulla voidaan tuottaa mm. positroneja, myoneja, pioneja ja kaoneja.[3] Jopa ns. vapaita kvarkkeja ja gluoneja voidaan luoda törmäyttämällä tarpeeksi suurella energialla hiukkasia (protoneja), jolloin syntyy kvarkkigluoniplasmaa (kvarkit eivät enää sidoksissa toisiinsa).[4] Tällöin lämpötila ja paine ovat hetkellisesti todella korkeat. Kvarkkigluoniplasmaa ei voida kuitenkaan havaita suoraan, sillä se jäähtyy nopeasti (kvarkit sitoutuvat takaisin hadroneiksi), mutta sen olemassaolon voi päätellä hiukkasilmaisimilla niihin osuneista lopputilan hiukkasista.
Alkeishiukkasten havaitseminen
[muokkaa | muokkaa wikitekstiä]Alkeishiukkasten havaitsemiseen voidaan käyttää esimerkiksi sumukammiota, kuplakammiota, geiger-mittaria ja tuikeilmaisinta. Monet alkeishiukkasilmaisimet perustuvat siihen, että ilmaisimen läpi kulkeva tutkittava hiukkanen ionisoi atomeja laitteen sisällä synnyttäen havaittavan signaalin.[5] Sähköisesti neutraalit hiukkaset eivät tietenkään voi ionisoida, mutta vuorovaikuttaessaan oikeanlaisen ilmaisinmateriaalin kanssa syntyy varattuja hiukkasia, joita voidaan ionisaation kautta havaita. Esimerkiksi fotoneja voidaan havaita syntyneiden positronien ja elektronien kautta.[6]
Katso myös
[muokkaa | muokkaa wikitekstiä]Lähteet
[muokkaa | muokkaa wikitekstiä]- Griffths, David: ”Introduction”, Introduction To Elementary Particles. Wiley, 1987. ISBN 0-471-60386-4 (englanniksi)
Viitteet
[muokkaa | muokkaa wikitekstiä]- ↑ Das, Ashok; Ferbel T.: Introduction to nuclear and particle physics, s. 207. World Scientific, 2004. ISBN 9789812387448 (englanniksi)
- ↑ What's Cosmic Ray? (html) Institute of Cosmic Ray Research, University of Tokyo. Arkistoitu 9.7.2007. (englanniksi)
- ↑ a b Griffths 1987, s. 4–5
- ↑ Quark-gluon plasma Relativistic Heavy Ion Collider. (englanniksi)
- ↑ Griffths 1987, s. 7
- ↑ Boyarkin, O. M.; Heinzerton, Alfred L.: Introduction to Physics of Elementary Particles, s. 190. Nova Publishers, 2007. ISBN 9781600212000 (englanniksi)
Kirjallisuutta
[muokkaa | muokkaa wikitekstiä]- Schumm, Bruce A.: Syvällä asioiden sydämessä: Hiukkasfysiikan kauneus. (Alkuteos: Deep Down Things: The Breathtaking Beauty of Particle Physics, 2004) Suomentanut Kimmo Pietiläinen. Helsinki: Terra Cognita, 2006. ISBN 952-5202-91-7
- Raitio, Risto (toim.): Alkeishiukkasten maailma – Kvarkeista aikojen alkuun. Helsinki: Ursa, 1980. ISBN 951-9269-13-4