ایمرژن
ظاهر
در ریاضیات، ایمرژن (به انگلیسی: Immersion) (ممکن است به آن جادهنده، ایمرسیون، ایمرشن هم گفته می شود) تابعی دیفرانسیلپذیر بین منیفلدهای دیفرانسیلپذیر است که مشتق آن همه جا یک به یک باشد.[۱] به طور صریح ایمرژن است اگر:
یک تابع یک به یک در تمام نقاط از باشد (که در آن نشانگر فضای مماس یک منیفلد در نقطه ای چون در است). به طور معادل، یک ایمرژن است اگر مشتقش همه جا رتبه ثابت داشته و مقدار رتبه آن برابر بعد باشد:[۲]
نیاز نیست خود تابع یک به یک باشد، تنها باید مشتق آن یک به یک باشد.
یادداشتها
[ویرایش]- ↑ منابع تعریف: (Bishop و Crittenden 1964، ص. 185), (Darling 1994، ص. 53), (do Carmo 1994، ص. 11), (Frankel 1997، ص. 169), (Gallot، Hulin و Lafontaine 2004، ص. 12), (Kobayashi و Nomizu 1963، ص. 9), (Kosinski 2007، ص. 27), (Szekeres 2004، ص. 429).
- ↑ این تعریف از این منابع گرفته شده است: (Crampin و Pirani 1994، ص. 243), (Spivak 1999، ص. 46).
- مشارکتکنندگان ویکیپدیا. «Immersion (Mathematics)». در دانشنامهٔ ویکیپدیای انگلیسی، بازبینیشده در ۲۶ سپتامبر ۲۰۱۹.
منابع
[ویرایش]- Adachi, Masahisa (1993), Embeddings and immersions, ISBN 978-0-8218-4612-4, translation Kiki Hudson
{{citation}}
: نگهداری CS1: پست اسکریپت (link) - Arnold, V. I.; Varchenko, A. N.; Gusein-Zade, S. M. (1985), Singularities of Differentiable Maps: Volume 1, Birkhäuser, ISBN 0-8176-3187-9
- Bishop, Richard Lawrence; Crittenden, Richard J. (1964), Geometry of manifolds, New York: Academic Press, ISBN 978-0-8218-2923-3
- Bishop, R.L.; Goldberg, S.I. (1968), Tensor Analysis on Manifolds (First Dover 1980 ed.), The Macmillan Company, ISBN 0-486-64039-6
- Bruce, J. W.; Giblin, P. J. (1984), Curves and Singularities, Cambridge University Press, ISBN 0-521-42999-4
- Carter, J. Scott; Saito, Masahico (1998), "Surfaces in 3-space that do not lift to embeddings in 4-space", Knot theory (Warsaw, 1995), Banach Center Publ., vol. 42, Polish Acad. Sci., Warsaw, pp. 29–47, CiteSeerX 10.1.1.44.1505, MR 1634445.
- Carter, J. Scott; Saito, Masahico (1998), Knotted Surfaces and Their Diagrams, Mathematical Surveys and Monographs, vol. 55, p. 258, ISBN 978-0-8218-0593-0
- Carter, Scott; Kamada, Seiichi; Saito, Masahico (2004), Surfaces in 4-space, Encyclopaedia of Mathematical Sciences, vol. 142, Berlin: Springer-Verlag, doi:10.1007/978-3-662-10162-9, ISBN 3-540-21040-7, MR 2060067.
- Cohen, Ralph L. (1985), "The immersion conjecture for differentiable manifolds", Annals of Mathematics, Second Series, 122 (2): 237–328, doi:10.2307/1971304, MR 0808220.
- Crampin, Michael; Pirani, Felix Arnold Edward (1994), Applicable differential geometry, Cambridge, England: Cambridge University Press, ISBN 978-0-521-23190-9
- Darling, Richard William Ramsay (1994), Differential forms and connections, Cambridge, UK: Cambridge University Press, ISBN 978-0-521-46800-8.
- do Carmo, Manfredo Perdigao (1994), Riemannian Geometry, ISBN 978-0-8176-3490-2
- Frankel, Theodore (1997), The Geometry of Physics, Cambridge: Cambridge University Press, ISBN 0-521-38753-1
- Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004), Riemannian Geometry (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-20493-0
- Gromov, M. (1986), Partial differential relations, Springer, ISBN 3-540-12177-3
- Hirsch, Morris W. (1959), "Immersions of manifolds", Transactions of the American Mathematical Society, 93: 242–276, doi:10.2307/1993453, MR 0119214.
- Kobayashi, Shoshichi; Nomizu, Katsumi (1963), Foundations of Differential Geometry, Volume 1, New York: Wiley-Interscience
- Koschorke, Ulrich (1979), "Multiple points of immersions, and the Kahn-Priddy theorem", Mathematische Zeitschrift, 169 (3): 223–236, doi:10.1007/BF01214837, MR 0554526.
- Kosinski, Antoni Albert (2007) [1993], Differential manifolds, Mineola, New York: Dover Publications, ISBN 978-0-486-46244-8
- Lang, Serge (1999), Fundamentals of Differential Geometry, Graduate Texts in Mathematics, New York: Springer, ISBN 978-0-387-98593-0
- Massey, W. S. (1960), "On the Stiefel-Whitney classes of a manifold", American Journal of Mathematics, 82: 92–102, doi:10.2307/2372878, MR 0111053.
- Smale, Stephen (1958), "A classification of immersions of the two-sphere", Transactions of the American Mathematical Society, 90: 281–290, doi:10.2307/1993205, MR 0104227.
- Smale, Stephen (1959), "The classification of immersions of spheres in Euclidean spaces", Annals of Mathematics, Second Series, 69: 327–344, doi:10.2307/1970186, MR 0105117.
- Spivak, Michael (1999) [1970], A Comprehensive introduction to differential geometry (Volume 1), Publish or Perish, ISBN 0-914098-70-5
- Spring, David (2005), "The golden age of immersion theory in topology: 1959–1973: A mathematical survey from a historical perspective", Bulletin of the American Mathematical Society, New Series, 42 (2): 163–180, CiteSeerX 10.1.1.363.913, doi:10.1090/S0273-0979-05-01048-7, MR 2133309.
- Szekeres, Peter (2004), A course in modern mathematical physics: groups, Hilbert space and differential geometry, Cambridge, United Kingdom: Cambridge University Press, ISBN 978-0-521-82960-1
- Wall, C. T. C. (1999), Surgery on compact manifolds (PDF), Mathematical Surveys and Monographs, vol. 69 (Second ed.), Providence, RI: American Mathematical Society, doi:10.1090/surv/069, ISBN 0-8218-0942-3, MR 1687388.