June 2011 lunar eclipse

A total lunar eclipse occurred at the Moon’s ascending node of orbit on Wednesday, June 15, 2011,[1] with an umbral magnitude of 1.7014. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 4.1 days after perigee (on June 11, 2011, at 21:40 UTC), the Moon's apparent diameter was larger.[2]

June 2011 lunar eclipse
Total eclipse
Totality as viewed from Dar es Salaam, Tanzania, 19:28 UTC
DateJune 15, 2011
Gamma0.0897
Magnitude1.7014
Saros cycle130 (34 of 72)
Totality100 minutes, 13 seconds
Partiality219 minutes, 17 seconds
Penumbral336 minutes, 4 seconds
Contacts (UTC)
P117:24:37
U118:22:57
U219:22:29
Greatest20:12:36
U321:02:42
U422:02:14
P423:00:41

The last time a lunar eclipse was closer to the center of the Earth's shadow was on July 16, 2000. The next central total lunar eclipse occurred on July 27, 2018.

Visibility and viewing

edit

The eclipse was completely visible over east Africa, Antarctica, and west, central, and south Asia, seen rising over Europe, west Africa, and South America and setting over east Asia and Australia.[3]

In western Asia, Australia, and the Philippines, the lunar eclipse was visible just before sunrise.[4] It was very visible in the clear and cloudless night sky throughout eastern and southeast Asia. Africa, far eastern Russia and Europe witnessed the whole event even in the late stages (as in partial lunar eclipse). The Americas (including North and northwestern South America) missed the eclipse completely (except in most areas) because it occurred at moonset.

   
Hourly motion shown right to left
 
The Moon's hourly motion across the Earth's shadow in the constellation of Ophiuchus (north of Scorpius).
 
Visibility map

Images

edit
 
NASA chart of the eclipse
edit

Eclipse details

edit

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]

June 15, 2011 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.68833
Umbral Magnitude 1.70136
Gamma 0.08968
Sun Right Ascension 05h35m33.6s
Sun Declination +23°19'06.1"
Sun Semi-Diameter 15'44.7"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 17h35m32.3s
Moon Declination -23°13'51.6"
Moon Semi-Diameter 15'57.2"
Moon Equatorial Horizontal Parallax 0°58'33.0"
ΔT 66.5 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of June–July 2011
June 1
Descending node (new moon)
June 15
Ascending node (full moon)
July 1
Descending node (new moon)
     
Partial solar eclipse
Solar Saros 118
Total lunar eclipse
Lunar Saros 130
Partial solar eclipse
Solar Saros 156
edit

Eclipses in 2011

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Lunar Saros 130

edit

Inex

edit

Triad

edit

Lunar eclipses of 2009–2013

edit

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The penumbral lunar eclipses on February 9, 2009 and August 6, 2009 occur in the previous lunar year eclipse set, and the lunar eclipses on April 25, 2013 (partial) and October 18, 2013 (penumbral) occur in the next lunar year eclipse set.

Lunar eclipse series sets from 2009 to 2013
Ascending node   Descending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
110 2009 Jul 07
 
Penumbral
 
−1.4916 115
 
2009 Dec 31
 
Partial
 
0.9766
120
 
2010 Jun 26
 
Partial
 
−0.7091 125
 
2010 Dec 21
 
Total
 
0.3214
130
 
2011 Jun 15
 
Total
 
0.0897 135
 
2011 Dec 10
 
Total
 
−0.3882
140
 
2012 Jun 04
 
Partial
 
0.8248 145 2012 Nov 28
 
Penumbral
 
−1.0869
150 2013 May 25
 
Penumbral
 
1.5351

Saros 130

edit

This eclipse is a part of Saros series 130, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 1416. It contains partial eclipses from September 4, 1560 through April 12, 1903; total eclipses from April 22, 1921 through September 11, 2155; and a second set of partial eclipses from September 21, 2173 through May 10, 2552. The series ends at member 71 as a penumbral eclipse on July 26, 2678.

The longest duration of totality will be produced by member 35 at 101 minutes, 53 seconds on June 26, 2029. All eclipses in this series occur at the Moon’s ascending node of orbit.[7]

Greatest First
 
The greatest eclipse of the series will occur on 2029 Jun 26, lasting 101 minutes, 53 seconds.[8]
Penumbral Partial Total Central
1416 Jun 10
1560 Sep 04
1921 Apr 22
 
1975 May 25
 
Last
Central Total Partial Penumbral
2083 Jul 29
 
2155 Sep 11
2552 May 10
2678 Jul 26

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1804 Jan 26
(Saros 111)
1814 Dec 26
(Saros 112)
1825 Nov 25
(Saros 113)
1836 Oct 24
(Saros 114)
1847 Sep 24
(Saros 115)
1858 Aug 24
(Saros 116)
1869 Jul 23
(Saros 117)
1880 Jun 22
(Saros 118)
1891 May 23
(Saros 119)
1902 Apr 22
(Saros 120)
   
1913 Mar 22
(Saros 121)
1924 Feb 20
(Saros 122)
1935 Jan 19
(Saros 123)
1945 Dec 19
(Saros 124)
1956 Nov 18
(Saros 125)
                   
1967 Oct 18
(Saros 126)
1978 Sep 16
(Saros 127)
1989 Aug 17
(Saros 128)
2000 Jul 16
(Saros 129)
2011 Jun 15
(Saros 130)
                   
2022 May 16
(Saros 131)
2033 Apr 14
(Saros 132)
2044 Mar 13
(Saros 133)
2055 Feb 11
(Saros 134)
2066 Jan 11
(Saros 135)
                   
2076 Dec 10
(Saros 136)
2087 Nov 10
(Saros 137)
2098 Oct 10
(Saros 138)
2109 Sep 09
(Saros 139)
2120 Aug 09
(Saros 140)
           
2131 Jul 10
(Saros 141)
2142 Jun 08
(Saros 142)
2153 May 08
(Saros 143)
2164 Apr 07
(Saros 144)
2175 Mar 07
(Saros 145)
2186 Feb 04
(Saros 146)
2197 Jan 04
(Saros 147)

Inex series

edit

The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.

This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 39.

All events in this series listed below and more are total lunar eclipses.

Inex series from 1000 to 2500 AD
Ascending node Descending node Ascending node Descending node
Saros Date Saros Date Saros Date Saros Date
96 1027 Apr 23 97 1056 Apr 2 98 1085 Mar 14 99 1114 Feb 21
100 1143 Feb 1 101 1172 Jan 13 102 1200 Dec 22 103 1229 Dec 2
104 1258 Nov 12 105 1287 Oct 22 106 1316 Oct 2 107 1345 Sep 12
108 1374 Aug 22 109 1403 Aug 2 110 1432 Jul 13 111 1461 Jun 22
112 1490 Jun 2 113 1519 May 14 114 1548 Apr 22 115 1577 Apr 2
116 1606 Mar 24 117 1635 Mar 3 118 1664 Feb 11 119 1693 Jan 22
120 1722 Jan 2 121 1750 Dec 13 122 1779 Nov 23 123 1808 Nov 3
124 1837 Oct 13 125 1866 Sep 24 126 1895 Sep 4 127 1924 Aug 14
128 1953 Jul 26
 
129 1982 Jul 6
 
130 2011 Jun 15
 
131 2040 May 26
 
132 2069 May 6
 
133 2098 Apr 15
 
134 2127 Mar 28 135 2156 Mar 7
136 2185 Feb 14 137 2214 Jan 27 138 2243 Jan 7 139 2271 Dec 17
140 2300 Nov 27 141 2329 Nov 7 142 2358 Oct 18 143 2387 Sep 28
144 2416 Sep 7 145 2445 Aug 17 146 2474 Jul 29

Half-Saros cycle

edit

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[9] This lunar eclipse is related to two annular solar eclipses of Solar Saros 137.

June 10, 2002 June 21, 2020
   

See also

edit

Notes

edit
  1. ^ "June 15–16, 2011 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 15 November 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 15 November 2024.
  3. ^ "Total Lunar Eclipse of 2011 Jun 15" (PDF). NASA. Retrieved 15 November 2024.
  4. ^ "Longest lunar eclipse for a decade turns moon blood red", Terry Brown. Clare Peddie. Herald Sun. 16 June 2011. Accessed 15 June 2011
  5. ^ "Total Lunar Eclipse of 2011 Jun 15". EclipseWise.com. Retrieved 15 November 2024.
  6. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. ^ "NASA - Catalog of Lunar Eclipses of Saros 130". eclipse.gsfc.nasa.gov.
  8. ^ Listing of Eclipses of series 130
  9. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros

References

edit
  • Bao-Lin Liu, Canon of Lunar Eclipses 1500 B.C.-A.D. 3000, 1992
edit
Webcast
  • The Central Lunar Eclipse was shown live through WEBCAST – By Sky Watchers Association of North Bengal(SWAN) Siliguri, West Bengal [1] or [2]
  • By Eclipse Chaser Athaenium New Delhi [3]
  • By Astronation.net [4] Archived 16 June 2011 at the Wayback Machine
  • By Ciclope group and Shelios [5]