Poločas přeměny
Poločas přeměny (obvykle označovaný T½) je doba, za kterou se přemění polovina celkového počtu atomárních jader ve vzorku. Pro konkrétní izotop je konstantní. Má hodnotu od zlomku sekundy až po milióny let. Často se používá i termín poločas rozpadu, ale ten je méně obecný, protože ne každá radioaktivní přeměna představuje rozpad (například vyzáření fotonu gama záření z excitovaného jádra).
Pro konkrétní jádro nuklidu (určitého izotopu daného prvku) nelze v principu určit, kdy dojde k přeměně. Kvantová mechanika jako pravděpodobnostní teorie umožňuje stanovit pouze pravděpodobnost, že k přeměně dojde v daném časovém úseku, například v následujících 10 minutách. Tento pravděpodobnostní charakter prakticky znamená, že máme-li vzorek látky (obsahující jediný radioaktivní nuklid) běžné velikosti a tedy o velkém počtu atomů (ke srovnání Avogadrova konstanta), pak můžeme přesně vypočítat dobu, za jakou se přemění právě polovina přítomných jader.
Izotopy
[editovat | editovat zdroj]Stabilita izotopu se určuje právě na základě poločasu přeměny. Stabilní izotopy ho mají nekonečný, jádra se samovolně nepřeměňují. Za stabilnější je považován izotop s větším poločasem přeměny, protože jeho nuklidy v průměru déle vydrží být tím, čím jsou.
V přírodní směsi daného chemického prvku jsou určitá procentuální zastoupení několika jeho izotopů. Například vodík v oceánské vodě obsahuje 99,9844 % protia (to jest atomy se samotným protonem v jádře) a 0,0156 % deuteria, takzvaného těžkého vodíku, který má v jádře navíc vázaný jeden neutron. Oba izotopy jsou zcela stabilní. Krom toho existuje izotop vodíku se třemi nukleony zvaný tritium, který se v přírodní směsi nevyskytuje, vyrábí se uměle. Tritium je radioaktivním zářičem β s poločasem přeměny 12,36 let. Některé chemické prvky vůbec nemají stabilní izotopy, například radon. Některé se vyskytují v přírodě jak ve formě stabilních izotopů, tak i nestabilních. Například uhlík v atmosférickém oxidu uhličitém obsahuje díky kosmickému záření stálý podíl radioaktivního izotopu C 14. Měření jeho procentuálního zastoupení v předmětech organického původu umožňuje určit jejich stáří díky známému poločasu přeměny (5715 let). Tento způsob měření stáří se nazývá radiokarbonová metoda datování.
Příklady
[editovat | editovat zdroj]Příklady nejznámějších radioizotopů, řazeno dle poločasu přeměny.
Prvek | Izotop | Poločas rozpadu |
---|---|---|
Beryllium | 8Be | 6,7×10−17 s[1] |
Polonium | 212Po | 0,3 µs[1] |
Thorium | 223Th | 0,9 sekundy[1] |
Francium | 223Fr | 22 minut[1] |
Síra | 35S | 87,5 dní[1] |
Kobalt | 60Co | 5,27 let[2] |
Tritium | 3H | 12,36 let[1] |
Cesium | 137Cs | 30,17 let[2] |
Radium | 226Ra | 1 622[1] / 1 602[2] let |
Uhlík | 14C | 5 730 let[1][2] |
Plutonium | 239Pu | 24 110[1] / 24 400[2] let |
Uran | 235U | 710 milionů let[2] |
Draslík | 40K | 1,26 miliardy let[2] |
Uran | 238U | 4,468[1] / 4,51[2] miliard let |
Thorium | 232Th | 14,05[1] / 13,9[2]miliard let |
Bismut | 209Bi | cca 1,9×1019 let[1] |
Příbuzné veličiny
[editovat | editovat zdroj]Obecněji definovanou veličinou stejného charakteru je střední doba života, obvykle značená . Pro exponenciální přeměnu lze souvislost s poločasem přeměny zapsat vztahem:
Odkazy
[editovat | editovat zdroj]Reference
[editovat | editovat zdroj]- ↑ a b c d e f g h i j k l Radioaktivita a jaderné reakce - Zákony radioaktivních přeměn [PDF online]. Gymnázium & SOŠPg Liberec Jeronýmova [cit. 2011-03-02]. Dostupné v archivu pořízeném dne 2011-07-18.
- ↑ a b c d e f g h i ULLMANN, Vojtěch. Jaderná a radiační fyzika - Radionuklidy - Některé nejdůležitější radionuklidy [online]. Astro Nukl Fyzika [cit. 2011-03-02]. Dostupné online.
Související články
[editovat | editovat zdroj]Externí odkazy
[editovat | editovat zdroj]- Obrázky, zvuky či videa k tématu poločas přeměny na Wikimedia Commons
- Radioaktivita, studijní text Přírodovědecké fakulty Masarykovy univerzity
- Ionizující záření, Miniencyklopedie ČEZu