Перейти до вмісту

Група кватерніона

Матеріал з Вікіпедії — вільної енциклопедії.
Циклічний граф Q8. Кожен колір це послідовність степенів деякого елемента, зв'язана з нейтральним елементом — (1). Для прикладу, червоний цикл показує, що i 2 = −1, i 3 = −i  та i 4 = 1. А також (−i )2 = −1, (−i )3 = i  та (−i )4 = 1.

В теорії груп, група кватерніона є неабелевою[en] групою порядку 8, ізоморфною множині восьми визначеним кватерніонам з операцією множення. Позначається Q8 і представляється заданням групи

де 1 (нейтральний елемент) та −1 комутують зі всіма елементами групи.

Множення елементів {±i, ±j, ±k} подібне до векторного добутку ортів в тривимірному евклідовому просторі.

Властивості

[ред. | ред. код]

Матричне представлення

[ред. | ред. код]

Група кватерніона може бути представлена як підгрупа загальної лінійної групи:

де

Всі матриці мають одиничний детермінант, тому це представлення Q8 в спеціальну лінійну група SL2(C).

Також важливим є представлення Q8 в 8 елементів 2-векторного простору над скінченним полем F3:

де

де {−1,0,1} елементами з поля F3. Всі матриці мають одиничний детермінант над F3, тому це представлення Q8 в спеціальну лінійну групу SL(2, 3). Насправді Q8 є нормальною підгрупою SL(2, 3) індексу 3.

Див. також

[ред. | ред. код]

Джерела

[ред. | ред. код]

Українською

[ред. | ред. код]
  • (укр.) Гаврилків В. М. Елементи теорії груп та теорії кілець. — І.-Ф.  : Голіней, 2023. — 153 с.

Іншими мовами

[ред. | ред. код]