Кластерный анализ

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Результат кластерного анализа обозначен раскрашиванием точек в соответствии с принадлежностью к одному из трёх кластеров.

Кластерный анализ (англ. cluster analysis) — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы[1][2][3][4]. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.

Большинство исследователей (см., напр.,[5]) склоняются к тому, что впервые термин «кластерный анализ» (англ. cluster — гроздь, сгусток, пучок) был предложен психологом Р. Трионом[англ.][6]. Впоследствии возник ряд терминов, которые в настоящее время принято считать синонимами термина «кластерный анализ»: автоматическая классификация, ботриология.

Спектр применений кластерного анализа очень широк: его используют в археологии, медицине, психологии, химии, биологии, государственном управлении, филологии, антропологии, маркетинге, социологии, геологии и других дисциплинах. Однако универсальность применения привела к появлению большого количества несовместимых терминов, методов и подходов, затрудняющих однозначное использование и непротиворечивую интерпретацию кластерного анализа.

Задачи и условия

[править | править код]

Кластерный анализ выполняет следующие основные задачи:

  • Разработка типологии или классификации.
  • Исследование полезных концептуальных схем группирования объектов.
  • Порождение гипотез на основе исследования данных.
  • Проверка гипотез или исследования для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.

Независимо от предмета изучения применение кластерного анализа предполагает следующие этапы:

  • Отбор выборки для кластеризации. Подразумевается, что имеет смысл кластеризовать только количественные данные.
  • Определение множества переменных, по которым будут оцениваться объекты в выборке, то есть признакового пространства.
  • Вычисление значений той или иной меры сходства (или различия) между объектами.
  • Применение метода кластерного анализа для создания групп сходных объектов.
  • Проверка достоверности результатов кластерного решения.

Можно встретить описание двух фундаментальных требований, предъявляемых к данным — однородность и полнота. Однородность требует, чтобы все кластеризуемые сущности были одной природы, описывались сходным набором характеристик[7]. Если кластерному анализу предшествует факторный анализ, то выборка не нуждается в «ремонте» — изложенные требования выполняются автоматически самой процедурой факторного моделирования (есть ещё одно достоинство — z-стандартизация без негативных последствий для выборки; если её проводить непосредственно для кластерного анализа, она может повлечь за собой уменьшение чёткости разделения групп). В противном случае выборку нужно корректировать.

Типология задач кластеризации

[править | править код]

Типы входных данных

[править | править код]
  • Признаковое описание объектов. Каждый объект описывается набором своих характеристик, называемых признаками. Признаки могут быть числовыми или нечисловыми.
  • Матрица расстояний между объектами. Каждый объект описывается расстояниями до всех остальных объектов метрического пространства.
  • Матрица сходства между объектами[8]. Учитывается степень сходства объекта с другими объектами выборки в метрическом пространстве. Сходство здесь дополняет расстояние (различие) между объектами до 1.

В современной науке применяется несколько алгоритмов обработки входных данных. Анализ путём сравнения объектов, исходя из признаков, (наиболее распространённый в биологических науках) называется анализа Q-режима (англ. Q-mode analysis), а в случае сравнения признаков, на основе объектов — анализа R-режима. Существуют попытки использования гибридных режимов анализа (например, RQ-режим), но данная методология ещё должным образом не разработана.[источник не указан 522 дня]

Цели кластеризации

[править | править код]
  • Понимание данных путём выявления кластерной структуры. Разбиение выборки на группы схожих объектов позволяет упростить дальнейшую обработку данных и принятия решений, применяя к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй»).
  • Сжатие данных. Если исходная выборка избыточно большая, то можно сократить её, оставив по одному наиболее типичному представителю от каждого кластера.
  • Обнаружение новизны (англ. novelty detection). Выделяются нетипичные объекты, которые не удаётся присоединить ни к одному из кластеров.

В первом случае число кластеров стараются сделать поменьше. Во втором случае важнее обеспечить высокую степень сходства объектов внутри каждого кластера, а кластеров может быть сколько угодно. В третьем случае наибольший интерес представляют отдельные объекты, не вписывающиеся ни в один из кластеров.

Во всех этих случаях может применяться иерархическая кластеризация, когда крупные кластеры дробятся на более мелкие, те в свою очередь дробятся ещё мельче, и т. д. Такие задачи называются задачами таксономии. Результатом таксономии является древообразная иерархическая структура. При этом каждый объект характеризуется перечислением всех кластеров, которым он принадлежит, обычно от крупного к мелкому.

Методы кластеризации

[править | править код]

Общепринятой классификации методов кластеризации не существует, но можно выделить ряд групп подходов (некоторые методы можно отнести сразу к нескольким группам и потому предлагается рассматривать данную типизацию как некоторое приближение к реальной классификации методов кластеризации)[9]:

  1. Вероятностный подход. Предполагается, что каждый рассматриваемый объект относится к одному из k классов. Некоторые авторы (например, А. И. Орлов) считают, что данная группа вовсе не относится к кластеризации и противопоставляют её под названием «дискриминация», то есть выбор отнесения объектов к одной из известных групп (обучающих выборок).
  2. Подходы на основе систем искусственного интеллекта: весьма условная группа, так как методов очень много и методически они весьма различны.
  3. Логический подход. Построение дендрограммы осуществляется с помощью дерева решений.
  4. Теоретико-графовый подход.
  5. Иерархический подход. Предполагается наличие вложенных групп (кластеров различного порядка). Алгоритмы в свою очередь подразделяются на агломеративные (объединительные) и дивизивные (разделяющие). По количеству признаков иногда выделяют монотетические и политетические методы классификации.
  6. Другие методы. Не вошедшие в предыдущие группы.

Подходы 4 и 5 иногда объединяют под названием структурного или геометрического подхода, обладающего большей формализованностью понятия близости[10]. Несмотря на значительные различия между перечисленными методами все они опираются на исходную «гипотезу компактности»: в пространстве объектов все близкие объекты должны относиться к одному кластеру, а все различные объекты соответственно должны находиться в различных кластерах.

Формальная постановка задачи кластеризации

[править | править код]

Пусть  — множество объектов,  — множество номеров (имён, меток) кластеров. Задана функция расстояния между объектами . Имеется конечная обучающая выборка объектов . Требуется разбить выборку на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из объектов, близких по метрике , а объекты разных кластеров существенно отличались. При этом каждому объекту приписывается номер кластера .

Алгоритм кластеризации — это функция , которая любому объекту ставит в соответствие номер кластера . Множество в некоторых случаях известно заранее, однако чаще ставится задача определить оптимальное число кластеров, с точки зрения того или иного критерия качества кластеризации.

Кластеризация (обучение без учителя) отличается от классификации (обучения с учителем) тем, что метки исходных объектов изначально не заданы, и даже может быть неизвестно само множество .

Решение задачи кластеризации принципиально неоднозначно, и тому есть несколько причин (как считает ряд авторов):

  • не существует однозначно наилучшего критерия качества кластеризации. Известен целый ряд эвристических критериев, а также ряд алгоритмов, не имеющих чётко выраженного критерия, но осуществляющих достаточно разумную кластеризацию «по построению». Все они могут давать разные результаты. Следовательно, для определ��ния качества кластеризации требуется эксперт предметной области, который бы мог оценить осмысленность выделения кластеров.
  • число кластеров, как правило, неизвестно заранее и устанавливается в соответствии с некоторым субъективным критерием. Это справедливо только для методов дискриминации, так как в методах кластеризации выделение кластеров идёт за счёт формализованного подхода на основе мер близости.
  • результат кластеризации существенно зависит от метрики, выбор которой, как правило, также субъективен и определяется экспертом. Но есть ряд рекомендаций по выбору мер близости для различных задач.

Применение

[править | править код]

В биологии

[править | править код]

В биологии кластеризация имеет множество приложений в самых разных областях. Например, в биоинформатике с её помощью анализируются сложные сети взаимодействующих генов, состоящие порой из сотен или даже тысяч элементов. Кластерный анализ позволяет выделить подсети, узкие места, концентраторы и другие скрытые свойства изучаемой системы, что позволяет в конечном счете узнать вклад каждого гена в формирование изучаемого феномена.

В области экологии широко применяется для выделения пространственно однородных групп организмов, сообществ и т. п. Реже методы кластерного анализа применяются для исследования сообществ во времени. Гетерогенность структуры сообществ приводит к возникновению нетривиальных методов кластерного анализа (например, метод Чекановского).

Исторически сложилось так, что в качестве мер близости в биологии чаще используются меры сходства, а не меры различия (расстояния).

В социологии

[править | править код]

Пр�� анализе результатов социологических исследований рекомендуется осуществлять анализ методами иерархического агломеративного семейства, а именно методом Уорда, при котором внутри кластеров оптимизируется минимальная дисперсия, в итоге создаются кластеры приблизительно равных размеров. Метод Уорда наиболее удачен для анализа социологических данных. В качестве меры различия лучше квадратичное евклидово расстояние, которое способствует увеличению контрастности кластеров. Главным итогом иерархического кластерного анализа является дендрограмма или «сосульчатая диаграмма». При её интерпретации исследователи сталкиваются с проблемой того же рода, что и толкование результатов факторного анализа — отсутствием однозначных критериев выделения кластеров. В качестве главных рекомендуется использовать два способа — визуальный анализ дендрограммы и сравнение результатов кластеризации, выполненной различными методами.

Визуальный анализ дендрограммы предполагает «обрезание» дерева на оптимальном уровне сходства элементов выборки. «Виноградную ветвь» (терминология Олдендерфера М. С. и Блэшфилда Р. К.[11]) целесообразно «обрезать» на отметке 5 шкалы Rescaled Distance Cluster Combine, таким образом будет достигнут 80 % уровень сходства. Если выделение кластеров по этой метке затруднено (на ней происходит слияние нескольких мелких кластеров в один крупный), то можно выбрать другую метку. Такая методика предлагается Олдендерфером и Блэшфилдом.

Теперь возникает вопрос устойчивости принятого кластерного решения. По сути, проверка устойчивости кластеризации сводится к проверке её достоверности. Здесь существует эмпирическое правило — устойчивая типология сохраняется при изменении методов кластеризации. Результаты иерархического кластерного анализа можно проверять итеративным кластерным анализом по методу k-средних. Если сравниваемые классификации групп респондентов имеют долю совпадений более 70 % (более 2/3 совпадений), то кластерное решение принимается.

Проверить адекватность решения, не прибегая к помощи другого вида анализа, нельзя. По крайней мере, в теоретическом плане эта проблема не решена. В классической работе Олдендерфера и Блэшфилда «Кластерный анализ» подробно рассматриваются и в итоге отвергаются дополнительные пять методов проверки устойчивости:

  1. кофенетическая корреляция — не рекомендуется и ограничена в использовании;
  2. тесты значимости (дисперсионный анализ) — всегда дают значимый результат;
  3. методика повторных (случайных) выборок, что, тем не менее, не доказывает обоснованность решения;
  4. тесты значимости для внешних признаков пригодны только для повторных измерений;
  5. методы Монте-Карло очень сложны и доступны только опытным математикам[источник не указан 4464 дня].

В информатике

[править | править код]

Примечания

[править | править код]
  1. Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: Классификация и снижение размерности. — М.: Финансы и статистика, 1989. — 607 с.
  2. Мандель И. Д. Кластерный анализ. — М.: Финансы и статистика, 1988. — 176 с.
  3. Хайдуков Д. С. Применение кластерного анализа в государственном управлении// Философия математики: актуальные проблемы. — М.: МАКС Пресс, 2009. — 287 с.
  4. Классификация и кластер. Под ред. Дж. Вэн Райзина. М.: Мир, 1980. 390 с.
  5. Мандель И. Д. Кластерный анализ. — М.: Финансы и статистика, 1988. — С. 10.
  6. Tryon R. C. Cluster analysis. — London: Ann Arbor Edwards Bros, 1939. — 139 p.
  7. Жамбю М. Иерархический кластер-анализ и соответствия. — М.: Финансы и статистика, 1988. — 345 с.
  8. Дюран Б., Оделл П. Кластерный анализ. — М.: Статистика, 1977. — 128 с.
  9. Бериков В. С., Лбов Г. С. Современные тенденции в кластерном анализе Архивная копия от 10 августа 2013 на Wayback Machine // Всероссийский конкурсный отбор обзорно-аналитических статей по приоритетному направлению «Информационно-телекоммуникационные системы», 2008. — 26 с.
  10. Вятченин Д. А. Нечёткие методы автоматической классификации. — Минск: Технопринт, 2004. — 219 с.
  11. Олдендерфер М. С., Блэшфилд Р. К. Кластерный анализ / Факторный, дискриминантный и кластерный анализ: пер. с англ.; Под. ред. И. С. Енюкова. — М.: Финансы и статистика, 1989—215 с.

На русском языке

  • www.MachineLearning.ru — профессиональный вики-ресурс, посвященный машинному обучению и интеллектуальному анализу данных

На английском языке