Разме́рность — количество незави��имых параметров, необходимых для описания состояния объекта, или количество степеней свободы системы.

Проекции фигур разной размерности на плоскость

Определения

править

Существует несколько различных подходов к определению размерности, например

В физике

править

Пространственные измерения: классические физические теории описывают трёхмерные физические измерения.

Примеры

править
 
Квадрат, куб и тессеракт соответственно
  • Для того, чтобы описать положение окружности на плоскости, достаточно трёх параметров: двух координат центра и радиуса, то есть: пространство окружностей на плоскости — трёхмерно; пространство точек на той же поверхности — двумерно; тем не менее сама окружность — пространство точек на окружности — одномерна: любая её точка может быть описана одним параметром.
  • В рамках ходовых моделей поверхности нашей планеты для определения положения города (город при этом рассматривается не как двумерный объект, а как точка) на поверхности Земли достаточно двух параметров, а именно: географической широты и географической долготы. Соответственно: пространство в таких моделях является двумерным (сокращённо — 2D, от англ. dimension), см. геопространство.
  • В рамках ходовых моделей нашей физической реальности для определения положения некоего объекта, к примеру — самолёта (самолёт при этом рассматривается не как трёхмерный объект, а как точка), требуется указать три координаты — дополнительно к широте и долготе нужно знать высоту, на которой он находится. Соответственно: пространство в таких моделях является трёхмерным (3D). К этим трём координатам может быть добавлена четвёртая (время) для описания не только текущего положения самолёта, но и момента времени. Если добавить в модель ориентацию (крен, тангаж, рыскание) самолёта, то добавятся ещё три координаты и соответствующее абстрактное пространство модели станет семимерным.

См. также

править

Примечания

править
  1. R. Blei Analysis in integer and fractional dimensions, — New-York: Cambridge university press, — 556 p. — 2003. — ISBN 0-511-01266-7 (netLibrary Edition), ISBN 0-521-65084-4 (hardback).