Комбинационная логика (комбинационная схема) в теории цифровых устройствдвоичная логика функционирования устройств комбинационного типа. У комбинационных устройств состояние выхода однозначно определяется набором входных сигналов, что отличает комбинационную логику от секвенциальной логики, в рамках которой выходное значение зависит не только от текущего входного воздействия, но и от предыстории функционирования цифрового устройства. Другими словами, секвенциальная логика предполагает наличие памяти, которая в комбинационной логике не предусмотрена.

Характеристика

править

Комбинационная логика используется в вычислительных цепях для формирования входных сигналов и для подготовки данных, которые подлежат сохранению. На практике вычислительные устройства обычно сочетают комбинационную и секвенциальную логику. Например, арифметическое логическое устройство (АЛУ) содержит комбинационные узлы.

Математику комбинационной логики обеспечивает булева алгебра. Базовыми операциями являются:

В комбинационных схемах используются логические элементы:

а также производные элементы:

Наиболее известными комбинационными устройствами являются сумматор, полусумматор, шифратор, дешифратор, мультиплексор и демультиплексор.

Формы представления

править

Формы представления логических выражений основаны на понятиях «истина» (T — true) и «ложь» (F — false). В двоичном счислении — это соответствует значениям 1 и 0, которыми кодируются пропозициональные переменные. Выражения комбинационной логики могут быть представлены в форме таблицы истинности, либо в виде формулы булевой алгебры. Ниже показан пример таблицы истинности для трёх переменных.

      Логическая формула Результат
F F F   T
F F T   T
F T F   F
F T T   F
T F F   T
T F T   F
T T F   F
T T T   T

Таблица истинности служит основой для представления логического выражения в виде алгебраической формулы:

 

В отличие от таблицы логическая формула способна преобразовываться по правилам булевой алгебры. Таким образом находится сокращённое выражение:

 

С точки зрения комбинационной логики представленные формулы определяют одну и ту же функцию. Разница в том, что сокращённая формула позволяет реализовать соответствующую комбинационную схему в более компактном виде.

Минимизация логических формул

править

Минимизация (упрощение) формул комбинационной логики осуществляется по следующим правилам:

 
 
 
 
 
 
 
 

Процедура минимизации (упрощения) позволяет упростить логическую функцию и, тем самым, добиться более компактной реализации комбинационных схем.

См. также

править

Литература

править
  • Поспелов Д. А. Логические методы анализа и синтеза схем./ Изд. 3-е, перераб. и доп. — М.: Энергия, 1974. — 368с.