login
A296925
Inert rational primes in the field Q(sqrt(-10)).
6
3, 17, 29, 31, 43, 61, 67, 71, 73, 79, 83, 97, 101, 107, 109, 113, 137, 149, 151, 163, 181, 191, 193, 199, 227, 229, 233, 239, 257, 269, 271, 283, 307, 311, 313, 337, 347, 349, 353, 359, 389, 421, 431, 433, 439, 443, 457, 461, 467, 479, 509, 523, 541, 547, 563, 577, 587, 593, 599, 617, 631, 643, 661, 673, 683, 701, 709
OFFSET
1,1
COMMENTS
Primes that are congruent to 3, 17, 21, 27, 29, 31, 33, or 39 mod 40. - Amiram Eldar, Nov 17 2023
Primes p such that the Legendre symbol (-10/p) = -1, i.e., -10 is not a square modulo p. - Jianing Song, Oct 23 2024
MAPLE
Load the Maple program HH given in A296920. Then run HH(-10, 200); This produces A155488, A296925, A293859. - N. J. A. Sloane, Dec 26 2017
MATHEMATICA
Select[Prime[Range[127]], KroneckerSymbol[-10, #] == -1 &] (* Amiram Eldar, Nov 17 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 26 2017
STATUS
approved