login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121726
Sum sequence A000522 then subtract 0,1,2,3,4,5,...
3
1, 2, 6, 21, 85, 410, 2366, 16065, 125665, 1112074, 10976174, 119481285, 1421542629, 18348340114, 255323504918, 3809950976993, 60683990530209, 1027542662934898, 18430998766219318, 349096664728623317, 6962409983976703317, 145841989688186383338, 3201192743180799343822
OFFSET
1,2
COMMENTS
Let aut(p) denote the size of the centralizer of the partition p (see A339016 for the definition). Then a(n) = Sum_{p in P} n!/aut(p), where P are the partitions of n with largest part k and length n + 1 - k. - Peter Luschny, Nov 19 2020
FORMULA
a(n) = A006231(n) + 1 = A002104(n) - (n-1). - Franklin T. Adams-Watters, Aug 29 2006
E.g.f.: exp(x)*(log(1/(1-x)) - x + 1). - Geoffrey Critzer, Nov 07 2015
EXAMPLE
A000522 begins 1 2 5 16 65 326 ...
with sums 1 3 8 24 89 415 ...
so sequence begins 1 2 6 21 85 410 ...
.
From Peter Luschny, Nov 19 2020: (Start):
The combinatorial interpretation is illustrated by this computation of a(5):
5! / aut([5]) = 120 / A339033(5, 1) = 120/5 = 24
5! / aut([4, 1]) = 120 / A339033(5, 2) = 120/4 = 30
5! / aut([3, 1, 1]) = 120 / A339033(5, 3) = 120/6 = 20
5! / aut([2, 1, 1, 1]) = 120 / A339033(5, 4) = 120/12 = 10
5! / aut([1, 1, 1, 1, 1]) = 120 / A339033(5, 5) = 120/120 = 1
--------------------------------------------------------------
Sum: a(5) = 85
(End)
MATHEMATICA
f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]]] + 1, {n, 1, 20}] (* Geoffrey Critzer, Nov 07 2015 *)
PROG
(PARI) A000522(n)={ return( sum(k=0, n, n!/k!)) ; } A121726(n)={ return(sum(k=0, n-1, A000522(k))-n+1) ; } { for(n=1, 25, print1(A121726(n), ", ") ; ) ; } \\ R. J. Mathar, Sep 02 2006
(SageMath)
def A121726(n):
def h(n, k):
if n == k: return 1
return factorial(n)//((n + 1 - k)*factorial(k - 1))
return sum(h(n, k) for k in (1..n))
print([A121726(n) for n in (1..23)])
# Demonstrates the combinatorial view:
def A121726(n):
if n == 0: return 1
f = factorial(n); S = 0
for k in (0..n):
for p in Partitions(n, max_part=k, inner=[k], length=n+1-k):
S += (f // p.aut())
return S
print([A121726(n) for n in (1..23)]) # Peter Luschny, Nov 20 2020
CROSSREFS
Also the row sums of A092271.
Sequence in context: A350798 A326276 A099947 * A344229 A090805 A150226
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Aug 17 2006
EXTENSIONS
More terms from Franklin T. Adams-Watters, Aug 29 2006
More terms from R. J. Mathar, Sep 02 2006
STATUS
approved