OFFSET
1,2
COMMENTS
If this function is iterated then, starting at any number n >= 7, we will always reach an 8 - see A212813, A212814, A212815. - N. J. A. Sloane, May 30 2012
REFERENCES
Bellamy, O. S.; Cadogan, C. C. Subsets of positive integers: their cardinality and maximality properties. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 167--178, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561043 (82b:10006) - From N. J. A. Sloane, May 30 2012
R. Honsberger, Problem 89, Another Curious Sequence, Mathematical Morsels, MAA, 1978, pp. 223-227.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
J. B. Roberts, Problem E2356, Amer. Math. Monthly, 79 (1972); solution by H. Kappus, loc. cit., 80 (1973), p. 810.
EXAMPLE
12 = 2^2 * 3 so a(12) = 1 + 2^2 + 3 = 8.
MAPLE
f:=proc(n) local i, t1; t1:=ifactors(n)[2]; 1+add( t1[i][1]*t1[i][2], i=1..nops(t1)); end; # N. J. A. Sloane, May 30 2012
MATHEMATICA
f[1]=1; f[n_]:=Total[Apply[Times, FactorInteger[n], 1]]+1; f/@Range@68 (* Ivan N. Ianakiev, Apr 18 2016 *)
PROG
(Haskell)
a036288 n = 1 + sum (zipWith (*)
(a027748_row n) (map fromIntegral $ a124010_row n))
-- Reinhard Zumkeller, May 30 2012
(PARI) A036288(n)=1+(n=factor(n))[, 1]~*n[, 2] \\ M. F. Hasler, May 30 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jun 01 2012
STATUS
approved