Pengguna:SNN95/Kotak pasir/Atom

Atom
Keadaan asas atom helium
Keadaan asas atom helium
Gambaran separa tepat berkenaan struktur atom helium. Kegelapan awan elektron adalah berpadanan dengan kamiran garis penglihatan pada fungsi kebarangkalian orbital elektron pertama. Nukleus atom yang telah diperbesarkan ini bercirikan skematik, dengan proton berwarna merah jambu dan neutron berwarna ungu. Secara nyata, nukleus (dan fungsi gelombang setiap nukleon) juga berbentuk sfera secara bersimetri. (Terdapat perbezaan bagi kes-kes nukleus kompleks.)
Pengelasan
Pembahagian terkecil yang diiktiraf dalam unsur kimia
Sifat
Jisim: ≈ 1.67 × 10-27 to 4.52 × 10-25 kg
Cas elektrik: sifar (jika nombor elektron bersamaan dengan nombor proton di dalam atom)
Diameter (hampiran) 100 pm = 1 Angstrom: 100 pm(He) ke 670 pm(Cs) [1]

Sebuah atom adalah unit konstituen terkecil dari jirim yang mempunyai sifat unsur kimia. Setiap pepejal, cecair, gas, dan plasma terdiri daripada atom neutral atau ion. Atom sangat kecil; saiz biasa adalah sekitar 100  pikometer (sepuluh perbilion meter, dalam skala pendek).

Atom adalah sangat kecil Yang cuba untuk meramalkan tingkah laku mereka menggunakan fizik klasik - seolah-olah mereka bola biliard, misalnya – memberikan ramalan yang tidak tepat kerana kesan kuantum. Melalui pembangunan fizik, model atom telah menggabungkan prinsip-prinsip kuantum untuk menjelaskan dan meramalkan tingkah laku yang lebih baik.

Setiap atom terdiri daripada nukleus dan satu atau lebih elektron terikat kepada nukleus. Nukleus diperbuat daripada satu atau lebih proton dan biasanya bilangan yang sama dengan neutron. Proton dan neutron dipanggil nukleon. Lebih daripada 99.94% jisim atom berada dalam nukleus. Proton mempunyai caj elektrik positif, elektron mempunyai cas elektrik negatif, dan neutron tidak mempunyai caj elektrik. Sekiranya bilangan proton dan elektron adalah sama, atom itu adalah neutral elektrik. Sekiranya atom mempunyai elektron yang lebih atau kurang daripada proton, maka ia mempunyai caj negatif atau positif secara keseluruhan, dan ia dipanggil ion.

Atom elektron tertarik kepada proton dalam nukleus atom oleh daya elektromagnet ini. Proton dan neutron di dalam nukleus ditarik satu sama lain oleh kuasa yang berbeza, iaitu daya nukleus, yang biasanya lebih kuat daripada daya elektromagnet yang menangkis proton bermuatan positif antara satu sama lain. Di bawah keadaan tertentu, daya elektromagnet yang semakin kuat menjadi lebih kuat daripada daya nukleus, dan nukleus boleh dikeluarkan daripada nukleus, meninggalkan unsur yang berbeza: reputan nukleus yang menghasilkan transmutasi nukleus.

Bilangan proton dalam nukleus mentakrifkan kedudukan unsur kimia mengikut atomnya: contohnya, semua atom tembaga mengandungi 29 proton. Bilangan neutron mentakrifkan isotop unsur tersebut. Bilangan elektron mempengaruhi sifat-sifat magnet atom. Atom boleh melekat pada satu atau lebih atom lain oleh ikatan kimia untuk membentuk sebatian kimia seperti molekul. Keupayaan atom untuk bergabung dan berpecah adalah kesan terhadap kebanyakan perubahan fizikal yang diamati dan merupakan keadaan terhadap disiplin kimia.

Sejarah teori atom

sunting

Atom dalam falsafah

sunting

Idea bahawa jirim terdiri daripada unit-unit diskret adalah idea yang sangat lama, muncul dalam banyak budaya purba seperti Yunani dan India. Perkataan "atom" dicipta oleh ahli falsafah Yunani kuno. Walau bagaimanapun, idea-idea ini diasaskan dalam pemikiran falsafah dan teologi daripada bukti dan eksperimen. Akibatnya, pandangan mereka terhadap apa atom kelihatan dan bagaimana mereka bertindak adalah tidak betul. Mereka juga tidak dapat meyakinkan semua orang, jadi atomisme hanyalah salah satu daripada beberapa teori bersaing mengenai sifat jirim. Tidak sampai abad ke-19 bahawa idea itu telah dipegang dan ditapis oleh ahli sains, apabila berkembangnya sains kimia menghasilkan penemuan bahawa hanya konsep atom dapat dijelaskan.

Teori berasaskan bukti pertama

sunting
 
Pelbagai atom dan molekul seperti yang digambarkan dalam A New System of Chemical Philosophy (1808) oleh John Dalton.

Pada awal 1800-an, John Dalton menggunakan konsep atom untuk menjelaskan mengapa elemen sentiasa bertindak balas dalam nisbah bilangan kecil (undang-undang pelbagai perkadaran). Contohnya, terdapat dua jenis stanum oksida: satu adalah 88.1% timah dan 11.9% oksigen dan yang lain adalah 78.7% timah dan 21.3% oksigen (masing-masing adalah stanum(II) oksida dan stanum dioksida). Ini bermakna 100g timah akan menggabungkan sama ada dengan 13.5g atau 27g oksigen. 13.5 dan 27 membentuk nisbah 1: 2, nisbah jumlah keseluruhan kecil. Corak umum dalam kimia ini mencadangkan kepada Dalton bahawa unsur-unsur bertindak balas dalam jumlah bilangan gandaan unit diskret—dengan kata lain, atom. Dalam kes stanum oksida, satu atom timah akan bergabung dengan satu atau dua atom oksigen.[1]

Dalton juga percaya teori atom dapat menjelaskan mengapa air menyerap gas yang berlainan dalam perkadaran yang berbeza. Sebagai contoh, dia mendapati bahawa air menyerap karbon dioksida jauh lebih baik daripada menyerap nitrogen.[2] Dalton menghipotesiskan ini disebabkan oleh perbezaan antara jisim dan konfigurasi zarah gas masing-masing, dan molekul karbon dioksida (CO2) lebih berat dan lebih besar daripada molekul nitrogen (N2).

Gerakan Brown

sunting

Pada tahun 1827, ahli botani Robert Brown menggunakan mikroskop untuk melihat biji-biji debu yang terapung di dalam air dan mendapati bahawa mereka bergerak secara tidak sengaja, suatu fenomena yang dikenali "Gerakan Brown". Ini dianggap disebabkan oleh molekul air mengetuk biji-bijian. Pada tahun 1905, Albert Einstein membuktikan realiti molekul-molekul dan gerakan mereka dengan menghasilkan analisis fizik statistik gerakan Brown pertama.[3][4][5] Ahli fizik Perancis Jean Perrin menggunakan karya Einstein untuk menentukan secara eksperimen jisim dan dimensi atom, dengan demikian mengesahkan secara teori teori atom Dalton.[6]

Penemuan elektron

sunting
 
Eksperimen Geiger–Marsden
Atas: Hasil yang dijangkakan: zarah alfa melalui model puding plum atom dengan pesongan yang diabaikan.
Bawah: Keputusan yang diperhatikan: sebahagian kecil dari zarah-zarah itu dipertahankan oleh pertumpuan nukleus positif.

Ahli fizik J. J. Thomson mengukur jisim sinar katod, menunjukkan bahawa ia terbuat daripada zarah, tetapi sekitar 1800 kali lebih ringan daripada atom paling ringan, hidrogen. Oleh itu, mereka bukan atom, tetapi zarah baru, zarah subatomik yang pertama yang pertama kali dijumpai "korpuskel" tetapi kemudian dinamakan elektron, selepas zarah-zarah yang dipostulasikan oleh George Johnstone Stoney pada tahun 1874. Dia juga menunjukkan bahawa mereka sama dengan zarah-zarah yang diberikan oleh fotoelektrik dan bahan-bahan radioaktif.[7] Ia dengan cepat diakui bahawa mereka adalah zarah yang membawa arus elektrik dalam wayar logam, dan membawa cas elektrik negatif dalam atom. Thomson diberikan 1906 Hadiah Nobel dalam Fizik untuk kerja ini. Oleh itu, dia membatalkan kepercayaan bahawa atom adalah zarah-zarah utama yang tidak boleh terbahagi.[8] Thomson juga salah menganggap bahawa elektron adalah berjisim rendah, elektron bercas negatif diagihkan ke seluruh atom secara sekata yang dikenakan caj positif. Ini dikenali sebagai model puding plum.

Penemuan nukleus

sunting

Pada tahun 1909, Hans Geiger dan Ernest Marsden, di bawah arahan Ernest Rutherford, membedil kerajang logam dengan zarah alfa untuk memerhatikan bagaimana mereka bertaburan. Mereka mengharapkan semua zarah alfa melepasi lurus dengan pesongan sedikit, kerana model Thomson mengatakan bahawa cas dalam atom begitu meresap sehingga medan elektrik mereka tidak dapat menjejaskan zarah alpha dengan banyak. Walau bagaimanapun, Geiger dan Marsden melihat zarah alfa yang dibelokkan oleh sudut lebih besar daripada 90°, yang sepatutnya tidak mungkin menurut model Thomson. Untuk menerangkan ini, Rutherford mencadangkan supaya cas atom positif tertumpu pada nukleus kecil di pusat atom.[9] Rutherford compared his findings to one firing a 15-inch shell and it coming back to hit the person who fired it.[10]

Penemuan isotop

sunting

Semasa bereksperimen dengan produk-produk pereputan radioaktif, pada tahun 1913, ahli radiokimia Frederick Soddy mendapati bahawa terdapat lebih daripada satu jenis atom pada setiap kedudukan pada jadual berkala.[11] Istilah isotop dicipta oleh Margaret Todd sebagai nama yang sesuai untuk atom-atom yang berlainan yang dimiliki oleh unsur yang sama. J.J. Thomson mencipta teknik untuk memisahkan jenis atom menerusi karyanya pada gas terionisasi, yang seterusnya membawa kepada penemuan isotop stabil.[12]

Model Bohr

sunting
 
Model Bohr atom, dengan elektron membuat "lompat kuantum" seketika dari satu orbit ke yang lain. Model ini sudah usang.

Pada tahun 1913 ahli fizik Niels Bohr mencadangkan model di mana elektron-elektron atom diasumsikan untuk mengorbit nukleus tetapi hanya boleh melakukannya dalam set orbit yang tak terhingga, dan boleh melompat di antara orbit ini hanya dalam perubahan tenaga yang diskret sepadan dengan penyerapan atau radiasi foton.[13] Kuantisasi ini digunakan untuk menjelaskan mengapa orbit-orbit elektron stabil (diberi seperti biasa, caj pecutan, termasuk gerakan bulat, kehilangan tenaga kinetik yang dipancarkan sebagai sinaran elektromagnetik, lihat sinaran sinkrotron) dan mengapa unsur menyerap dan mengeluarkan radiasi elektromagnet dalam spektrum diskret.[14]

Kemudian pada tahun yang sama Henry Moseley memberikan bukti eksperimen tambahan memihak kepada teori Niels Bohr. Hasil ini menghasilkan model Ernest Rutherford dan model Antonius Van den Broek, yang mencadangkan bahawa atom mengandungi nukleusnya yang sama dengan nombor cas nukleus positif yang sama dengan nombor (atom) dalam jadual berkala. Sehingga eksperimen ini, nombor atom tidak dikenali sebagai kuantiti fizikal dan bereksperimentasi. Ia sama dengan caj nukleus atom masih menjadi model atom yang diterima hari ini.[15]

Ikatan kimia dijelaskan

sunting

Chemical bonds between atoms were now explained, by Gilbert Newton Lewis in 1916, as the interactions between their constituent electrons.[16] As the chemical properties of the elements were known to largely repeat themselves according to the periodic law,[17] in 1919 the American chemist Irving Langmuir suggested that this could be explained if the electrons in an atom were connected or clustered in some manner. Groups of electrons were thought to occupy a set of electron shells about the nucleus.[18]

Further developments in quantum physics

sunting

The Stern–Gerlach experiment of 1922 provided further evidence of the quantum nature of the atom. When a beam of silver atoms was passed through a specially shaped magnetic field, the beam was split based on the direction of an atom's angular momentum, or spin. As this direction is random, the beam could be expected to spread into a line. Instead, the beam was split into two parts, depending on whether the atomic spin was oriented up or down.[19]

In 1924, Louis de Broglie proposed that all particles behave to an extent like waves. In 1926, Erwin Schrödinger used this idea to develop a mathematical model of the atom that described the electrons as three-dimensional waveforms rather than point particles. A consequence of using waveforms to describe particles is that it is mathematically impossible to obtain precise values for both the position and momentum of a particle at a given point in time; this became known as the uncertainty principle, formulated by Werner Heisenberg in 1926. In this concept, for a given accuracy in measuring a position one could only obtain a range of probable values for momentum, and vice versa.[20] This model was able to explain observations of atomic behavior that previous models could not, such as certain structural and spectral patterns of atoms larger than hydrogen. Thus, the planetary model of the atom was discarded in favor of one that described atomic orbital zones around the nucleus where a given electron is most likely to be observed.[21][22]

Discovery of the neutron

sunting

The development of the mass spectrometer allowed the mass of atoms to be measured with increased accuracy. The device uses a magnet to bend the trajectory of a beam of ions, and the amount of deflection is determined by the ratio of an atom's mass to its charge. The chemist Francis William Aston used this instrument to show that isotopes had different masses. The atomic mass of these isotopes varied by integer amounts, called the whole number rule.[23] The explanation for these different isotopes awaited the discovery of the neutron, an uncharged particle with a mass similar to the proton, by the physicist James Chadwick in 1932. Isotopes were then explained as elements with the same number of protons, but different numbers of neutrons within the nucleus.[24]

Fission, high-energy physics and condensed matter

sunting

In 1938, the German chemist Otto Hahn, a student of Rutherford, directed neutrons onto uranium atoms expecting to get transuranium elements. Instead, his chemical experiments showed barium as a product.[25][26] A year later, Lise Meitner and her nephew Otto Frisch verified that Hahn's result were the first experimental nuclear fission.[27][28] In 1944, Hahn received the Nobel prize in chemistry. Despite Hahn's efforts, the contributions of Meitner and Frisch were not recognized.[29]

In the 1950s, the development of improved particle accelerators and particle detectors allowed scientists to study the impacts of atoms moving at high energies.[30] Neutrons and protons were found to be hadrons, or composites of smaller particles called quarks. The standard model of particle physics was developed that so far has successfully explained the properties of the nucleus in terms of these sub-atomic particles and the forces that govern their interactions.[31]

Structure

sunting

Subatomic particles

sunting

Though the word atom originally denoted a particle that cannot be cut into smaller particles, in modern scientific usage the atom is composed of various subatomic particles. The constituent particles of an atom are the electron, the proton and the neutron; all three are fermions. However, the hydrogen-1 atom has no neutrons and the hydron ion has no electrons.

The electron is by far the least massive of these particles at 9.11×10−31 kg, with a negative electrical charge and a size that is too small to be measured using available techniques.[32] It is the lightest particle with a positive rest mass measured. Under ordinary conditions, electrons are bound to the positively charged nucleus by the attraction created from opposite electric charges. If an atom has more or fewer electrons than its atomic number, then it becomes respectively negatively or positively charged as a whole; a charged atom is called an ion. Electrons have been known since the late 19th century, mostly thanks to J.J. Thomson; see history of subatomic physics for details.

Protons have a positive charge and a mass 1,836 times that of the electron, at 1.6726×10−27 kg. The number of protons in an atom is called its atomic number. Ernest Rutherford (1919) observed that nitrogen under alpha-particle bombardment ejects what appeared to be hydrogen nuclei. By 1920 he had accepted that the hydrogen nucleus is a distinct particle within the atom and named it proton.

Neutrons have no electrical charge and have a free mass of 1,839 times the mass of the electron,[33] or 1.6929×10−27 kg, the heaviest of the three constituent particles, but it can be reduced by the nuclear binding energy. Neutrons and protons (collectively known as nucleons) have comparable dimensions—on the order of 2.5×10−15 m—although the 'surface' of these particles is not sharply defined.[34] The neutron was discovered in 1932 by the English physicist James Chadwick.

In the Standard Model of physics, electrons are truly elementary particles with no internal structure. However, both protons and neutrons are composite particles composed of elementary particles called quarks. There are two types of quarks in atoms, each having a fractional electric charge. Protons are composed of two up quarks (each with charge +2/3) and one down quark (with a charge of −1/3). Neutrons consist of one up quark and two down quarks. This distinction accounts for the difference in mass and charge between the two particles.[35][36]

The quarks are held together by the strong interaction (or strong force), which is mediated by gluons. The protons and neutrons, in turn, are held to each other in the nucleus by the nuclear force, which is a residuum of the strong force that has somewhat different range-properties (see the article on the nuclear force for more). The gluon is a member of the family of gauge bosons, which are elementary particles that mediate physical forces.[35][36]

Nucleus

sunting
 
The binding energy needed for a nucleon to escape the nucleus, for various isotopes

All the bound protons and neutrons in an atom make up a tiny atomic nucleus, and are collectively called nucleons. The radius of a nucleus is approximately equal to 1.07 3A fm, where A is the total number of nucleons.[37] This is much smaller than the radius of the atom, which is on the order of 105 fm. The nucleons are bound together by a short-ranged attractive potential called the residual strong force. At distances smaller than 2.5 fm this force is much more powerful than the electrostatic force that causes positively charged protons to repel each other.[38]

Atoms of the same element have the same number of protons, called the atomic number. Within a single element, the number of neutrons may vary, determining the isotope of that element. The total number of protons and neutrons determine the nuclide. The number of neutrons relative to the protons determines the stability of the nucleus, with certain isotopes undergoing radioactive decay.[39]

The proton, the electron, and the neutron are classified as fermions. Fermions obey the Pauli exclusion principle which prohibits identical fermions, such as multiple protons, from occupying the same quantum state at the same time. Thus, every proton in the nucleus must occupy a quantum state different from all other protons, and the same applies to all neutrons of the nucleus and to all electrons of the electron cloud. However, a proton and a neutron are allowed to occupy the same quantum state.[40]

For atoms with low atomic numbers, a nucleus that has more neutrons than protons tends to drop to a lower energy state through radioactive decay so that the neutron–proton ratio is closer to one. However, as the atomic number increases, a higher proportion of neutrons is required to offset the mutual repulsion of the protons. Thus, there are no stable nuclei with equal proton and neutron numbers above atomic number Z = 20 (calcium) and as Z increases, the neutron–proton ratio of stable isotopes increases.[40] The stable isotope with the highest proton–neutron ratio is lead-208 (about 1.5).

 
Illustration of a nuclear fusion process that forms a deuterium nucleus, consisting of a proton and a neutron, from two protons. A positron (e+)—an antimatter electron—is emitted along with an electron neutrino.

The number of protons and neutrons in the atomic nucleus can be modified, although this can require very high energies because of the strong force. Nuclear fusion occurs when multiple atomic particles join to form a heavier nucleus, such as through the energetic collision of two nuclei. For example, at the core of the Sun protons require energies of 3–10 keV to overcome their mutual repulsion—the coulomb barrier—and fuse together into a single nucleus.[41] Nuclear fission is the opposite process, causing a nucleus to split into two smaller nuclei—usually through radioactive decay. The nucleus can also be modified through bombardment by high energy subatomic particles or photons. If this modifies the number of protons in a nucleus, the atom changes to a different chemical element.[42][43]

If the mass of the nucleus following a fusion reaction is less than the sum of the masses of the separate particles, then the difference between these two values can be emitted as a type of usable energy (such as a gamma ray, or the kinetic energy of a beta particle), as described by Albert Einstein's mass–energy equivalence formula, E = mc2, where m is the mass loss and c is the speed of light. This deficit is part of the binding energy of the new nucleus, and it is the non-recoverable loss of the energy that causes the fused particles to remain together in a state that requires this energy to separate.[44]

The fusion of two nuclei that create larger nuclei with lower atomic numbers than iron and nickel—a total nucleon number of about 60—is usually an exothermic process that releases more energy than is required to bring them together.[45] It is this energy-releasing process that makes nuclear fusion in stars a self-sustaining reaction. For heavier nuclei, the binding energy per nucleon in the nucleus begins to decrease. That means fusion processes producing nuclei that have atomic numbers higher than about 26, and atomic masses higher than about 60, is an endothermic process. These more massive nuclei can not undergo an energy-producing fusion reaction that can sustain the hydrostatic equilibrium of a star.[40]

Electron cloud

sunting
 
A potential well, showing, according to classical mechanics, the minimum energy V(x) needed to reach each position x. Classically, a particle with energy E is constrained to a range of positions between x1 and x2.

The electrons in an atom are attracted to the protons in the nucleus by the electromagnetic force. This force binds the electrons inside an electrostatic potential well surrounding the smaller nucleus, which means that an external source of energy is needed for the electron to escape. The closer an electron is to the nucleus, the greater the attractive force. Hence electrons bound near the center of the potential well require more energy to escape than those at greater separations.

Electrons, like other particles, have properties of both a particle and a wave. The electron cloud is a region inside the potential well where each electron forms a type of three-dimensional standing wave—a wave form that does not move relative to the nucleus. This behavior is defined by an atomic orbital, a mathematical function that characterises the probability that an electron appears to be at a particular location when its position is measured.[46] Only a discrete (or quantized) set of these orbitals exist around the nucleus, as other possible wave patterns rapidly decay into a more stable form.[47] Orbitals can have one or more ring or node structures, and differ from each other in size, shape and orientation.[48]

 
Wave functions of the first five atomic orbitals. The three 2p orbitals each display a single angular node that has an orientation and a minimum at the center.
How atoms are constructed from electron orbitals and link to the periodic table

Each atomic orbital corresponds to a particular energy level of the electron. The electron can change its state to a higher energy level by absorbing a photon with sufficient energy to boost it into the new quantum state. Likewise, through spontaneous emission, an electron in a higher energy state can drop to a lower energy state while radiating the excess energy as a photon. These characteristic energy values, defined by the differences in the energies of the quantum states, are responsible for atomic spectral lines.[47]

The amount of energy needed to remove or add an electron—the electron binding energy—is far less than the binding energy of nucleons. For example, it requires only 13.6 eV to strip a ground-state electron from a hydrogen atom,[49] compared to 2.23 million eV for splitting a deuterium nucleus.[50] Atoms are electrically neutral if they have an equal number of protons and electrons. Atoms that have either a deficit or a surplus of electrons are called ions. Electrons that are farthest from the nucleus may be transferred to other nearby atoms or shared between atoms. By this mechanism, atoms are able to bond into molecules and other types of chemical compounds like ionic and covalent network crystals.[51]

Properties

sunting

Nuclear properties

sunting

By definition, any two atoms with an identical number of protons in their nuclei belong to the same chemical element. Atoms with equal numbers of protons but a different number of neutrons are different isotopes of the same element. For example, all hydrogen atoms admit exactly one proton, but isotopes exist with no neutrons (hydrogen-1, by far the most common form,[52] also called protium), one neutron (deuterium), two neutrons (tritium) and more than two neutrons. The known elements form a set of atomic numbers, from the single proton element hydrogen up to the 118-proton element oganesson.[53] All known isotopes of elements with atomic numbers greater than 82 are radioactive, although the radioactivity of element 83 (bismuth) is so slight as to be practically negligible.[54][55]

About 339 nuclides occur naturally on Earth,[56] of which 254 (about 75%) have not been observed to decay, and are referred to as "stable isotopes". However, only 90 of these nuclides are stable to all decay, even in theory. Another 164 (bringing the total to 254) have not been observed to decay, even though in theory it is energetically possible. These are also formally classified as "stable". An additional 34 radioactive nuclides have half-lives longer than 80 million years, and are long-lived enough to be present from the birth of the solar system. This collection of 288 nuclides are known as primordial nuclides. Finally, an additional 51 short-lived nuclides are known to occur naturally, as daughter products of primordial nuclide decay (such as radium from uranium), or else as products of natural energetic processes on Earth, such as cosmic ray bombardment (for example, carbon-14).[57][note 1]

For 80 of the chemical elements, at least one stable isotope exists. As a rule, there is only a handful of stable isotopes for each of these elements, the average being 3.2 stable isotopes per element. Twenty-six elements have only a single stable isotope, while the largest number of stable isotopes observed for any element is ten, for the element tin. Elements 43, 61, and all elements numbered 83 or higher have no stable isotopes.[58][halaman diperlukan]

Stability of isotopes is affected by the ratio of protons to neutrons, and also by the presence of certain "magic numbers" of neutrons or protons that represent closed and filled quantum shells. These quantum shells correspond to a set of energy levels within the shell model of the nucleus; filled shells, such as the filled shell of 50 protons for tin, confers unusual stability on the nuclide. Of the 254 known stable nuclides, only four have both an odd number of protons and odd number of neutrons: hydrogen-2 (deuterium), lithium-6, boron-10 and nitrogen-14. Also, only four naturally occurring, radioactive odd–odd nuclides have a half-life over a billion years: potassium-40, vanadium-50, lanthanum-138 and tantalum-180m. Most odd–odd nuclei are highly unstable with respect to beta decay, because the decay products are even–even, and are therefore more strongly bound, due to nuclear pairing effects.[58][halaman diperlukan]

The large majority of an atom's mass comes from the protons and neutrons that make it up. The total number of these particles (called "nucleons") in a given atom is called the mass number. It is a positive integer and dimensionless (instead of having dimension of mass), because it expresses a count. An example of use of a mass number is "carbon-12," which has 12 nucleons (six protons and six neutrons).

The actual mass of an atom at rest is often expressed using the unified atomic mass unit (u), also called dalton (Da). This unit is defined as a twelfth of the mass of a free neutral atom of carbon-12, which is approximately 1.66×10−27 kg.[59] Hydrogen-1 (the lightest isotope of hydrogen which is also the nuclide with the lowest mass) has an atomic weight of 1.007825 u.[60] The value of this number is called the atomic mass. A given atom has an atomic mass approximately equal (within 1%) to its mass number times the atomic mass unit (for example the mass of a nitrogen-14 is roughly 14 u). However, this number will not be exactly an integer except in the case of carbon-12 (see below).[61] The heaviest stable atom is lead-208,[54] with a mass of 207.9766521 u.[62]

As even the most massive atoms are far too light to work with directly, chemists instead use the unit of moles. One mole of atoms of any element always has the same number of atoms (about 6.022×1023). This number was chosen so that if an element has an atomic mass of 1 u, a mole of atoms of that element has a mass close to one gram. Because of the definition of the unified atomic mass unit, each carbon-12 atom has an atomic mass of exactly 12 u, and so a mole of carbon-12 atoms weighs exactly 0.012 kg.[59]

Shape and size

sunting

Atoms lack a well-defined outer boundary, so their dimensions are usually described in terms of an atomic radius. This is a measure of the distance out to which the electron cloud extends from the nucleus.[63] However, this assumes the atom to exhibit a spherical shape, which is only obeyed for atoms in vacuum or free space. Atomic radii may be derived from the distances between two nuclei when the two atoms are joined in a chemical bond. The radius varies with the location of an atom on the atomic chart, the type of chemical bond, the number of neighboring atoms (coordination number) and a quantum mechanical property known as spin.[64] On the periodic table of the elements, atom size tends to increase when moving down columns, but decrease when moving across rows (left to right).[65] Consequently, the smallest atom is helium with a radius of 32 pm, while one of the largest is caesium at 225 pm.[66]

When subjected to external forces, like electrical fields, the shape of an atom may deviate from spherical symmetry. The deformation depends on the field magnitude and the orbital type of outer shell electrons, as shown by group-theoretical considerations. Aspherical deviations might be elicited for instance in crystals, where large crystal-electrical fields may occur at low-symmetry lattice sites.[67][68] Significant ellipsoidal deformations have been shown to occur for sulfur ions[69] and chalcogen ions[70] in pyrite-type compounds.

Atomic dimensions are thousands of times smaller than the wavelengths of light (400–700 nm) so they cannot be viewed using an optical microscope. However, individual atoms can be observed using a scanning tunneling microscope. To visualize the minuteness of the atom, consider that a typical human hair is about 1 million carbon atoms in width.[71] A single drop of water contains about 2 sextillion (2×1021) atoms of oxygen, and twice the number of hydrogen atoms.[72] A single carat diamond with a mass of 2×10−4 kg contains about 10 sextillion (1022) atoms of carbon.[note 2] If an apple were magnified to the size of the Earth, then the atoms in the apple would be approximately the size of the original apple.[73]

Radioactive decay

sunting
 
This diagram shows the half-life (T½) of various isotopes with Z protons and N neutrons.

Every element has one or more isotopes that have unstable nuclei that are subject to radioactive decay, causing the nucleus to emit particles or electromagnetic radiation. Radioactivity can occur when the radius of a nucleus is large compared with the radius of the strong force, which only acts over distances on the order of 1 fm.[74]

The most common forms of radioactive decay are:[75][76]

  • Alpha decay: this process is caused when the nucleus emits an alpha particle, which is a helium nucleus consisting of two protons and two neutrons. The result of the emission is a new element with a lower atomic number.
  • Beta decay (and electron capture): these processes are regulated by the weak force, and result from a transformation of a neutron into a proton, or a proton into a neutron. The neutron to proton transition is accompanied by the emission of an electron and an antineutrino, while proton to neutron transition (except in electron capture) causes the emission of a positron and a neutrino. The electron or positron emissions are called beta particles. Beta decay either increases or decreases the atomic number of the nucleus by one. Electron capture is more common than positron emission, because it requires less energy. In this type of decay, an electron is absorbed by the nucleus, rather than a positron emitted from the nucleus. A neutrino is still emitted in this process, and a proton changes to a neutron.
  • Gamma decay: this process results from a change in the energy level of the nucleus to a lower state, resulting in the emission of electromagnetic radiation. The excited state of a nucleus which results in gamma emission usually occurs following the emission of an alpha or a beta particle. Thus, gamma decay usually follows alpha or beta decay.

Other more rare types of radioactive decay include ejection of neutrons or protons or clusters of nucleons from a nucleus, or more than one beta particle. An analog of gamma emission which allows excited nuclei to lose energy in a different way, is internal conversion— a process that produces high-speed electrons that are not beta rays, followed by production of high-energy photons that are not gamma rays. A few large nuclei explode into two or more charged fragments of varying masses plus several neutrons, in a decay called spontaneous nuclear fission.

Each radioactive isotope has a characteristic decay time period—the half-life—that is determined by the amount of time needed for half of a sample to decay. This is an exponential decay process that steadily decreases the proportion of the remaining isotope by 50% every half-life. Hence after two half-lives have passed only 25% of the isotope is present, and so forth.[74]

Magnetic moment

sunting

Elementary particles possess an intrinsic quantum mechanical property known as spin. This is analogous to the angular momentum of an object that is spinning around its center of mass, although strictly speaking these particles are believed to be point-like and cannot be said to be rotating. Spin is measured in units of the reduced Planck constant (ħ), with electrons, protons and neutrons all having spin ½ ħ, or "spin-½". In an atom, electrons in motion around the nucleus possess orbital angular momentum in addition to their spin, while the nucleus itself possesses angular momentum due to its nuclear spin.[77]

The magnetic field produced by an atom—its magnetic moment—is determined by these various forms of angular momentum, just as a rotating charged object classically produces a magnetic field. However, the most dominant contribution comes from electron spin. Due to the nature of electrons to obey the Pauli exclusion principle, in which no two electrons may be found in the same quantum state, bound electrons pair up with each other, with one member of each pair in a spin up state and the other in the opposite, spin down state. Thus these spins cancel each other out, reducing the total magnetic dipole moment to zero in some atoms with even number of electrons.[78]

In ferromagnetic elements such as iron, cobalt and nickel, an odd number of electrons leads to an unpaired electron and a net overall magnetic moment. The orbitals of neighboring atoms overlap and a lower energy state is achieved when the spins of unpaired electrons are aligned with each other, a spontaneous process known as an exchange interaction. When the magnetic moments of ferromagnetic atoms are lined up, the material can produce a measurable macroscopic field. Paramagnetic materials have atoms with magnetic moments that line up in random directions when no magnetic field is present, but the magnetic moments of the individual atoms line up in the presence of a field.[78][79]

The nucleus of an atom will have no spin when it has even numbers of both neutrons and protons, but for other cases of odd numbers, the nucleus may have a spin. Normally nuclei with spin are aligned in random directions because of thermal equilibrium. However, for certain elements (such as xenon-129) it is possible to polarize a significant proportion of the nuclear spin states so that they are aligned in the same direction—a condition called hyperpolarization. This has important applications in magnetic resonance imaging.[80][81]

Energy levels

sunting
 
These electron's energy levels (not to scale) are sufficient for ground states of atoms up to cadmium (5s2 4d10) inclusively. Do not forget that even the top of the diagram is lower than an unbound electron state.

The potential energy of an electron in an atom is negative, its dependence of its position reaches the minimum (the most absolute value) inside the nucleus, and vanishes when the distance from the nucleus goes to infinity, roughly in an inverse proportion to the distance. In the quantum-mechanical model, a bound electron can only occupy a set of states centered on the nucleus, and each state corresponds to a specific energy level; see time-independent Schrödinger equation for theoretical explanation. An energy level can be measured by the amount of energy needed to unbind the electron from the atom, and is usually given in units of electronvolts (eV). The lowest energy state of a bound electron is called the ground state, i.e. stationary state, while an electron transition to a higher level results in an excited state.[82] The electron's energy raises when n increases because the (average) distance to the nucleus increases. Dependence of the energy on [[azimuthal quantum number|Templat:Ell]] is caused not by electrostatic potential of the nucleus, but by interaction between electrons.

For an electron to transition between two different states, e.g. grounded state to first excited level (ionization), it must absorb or emit a photon at an energy matching the difference in the potential energy of those levels, according to Niels Bohr model, what can be precisely calculated by the Schrödinger equation. Electrons jump between orbitals in a particle-like fashion. For example, if a single photon strikes the electrons, only a single electron changes states in response to the photon; see Electron properties.

The energy of an emitted photon is proportional to its frequency, so these specific energy levels appear as distinct bands in the electromagnetic spectrum.[83] Each element has a characteristic spectrum that can depend on the nuclear charge, subshells filled by electrons, the electromagnetic interactions between the electrons and other factors.[84]

 
An example of absorption lines in a spectrum

When a continuous spectrum of energy is passed through a gas or plasma, some of the photons are absorbed by atoms, causing electrons to change their energy level. Those excited electrons that remain bound to their atom spontaneously emit this energy as a photon, traveling in a random direction, and so drop back to lower energy levels. Thus the atoms behave like a filter that forms a series of dark absorption bands in the energy output. (An observer viewing the atoms from a view that does not include the continuous spectrum in the background, instead sees a series of emission lines from the photons emitted by the atoms.) Spectroscopic measurements of the strength and width of atomic spectral lines allow the composition and physical properties of a substance to be determined.[85]

Close examination of the spectral lines reveals that some display a fine structure splitting. This occurs because of spin–orbit coupling, which is an interaction between the spin and motion of the outermost electron.[86] When an atom is in an external magnetic field, spectral lines become split into three or more components; a phenomenon called the Zeeman effect. This is caused by the interaction of the magnetic field with the magnetic moment of the atom and its electrons. Some atoms can have multiple electron configurations with the same energy level, which thus appear as a single spectral line. The interaction of the magnetic field with the atom shifts these electron configurations to slightly different energy levels, resulting in multiple spectral lines.[87] The presence of an external electric field can cause a comparable splitting and shifting of spectral lines by modifying the electron energy levels, a phenomenon called the Stark effect.[88]

If a bound electron is in an excited state, an interacting photon with the proper energy can cause stimulated emission of a photon with a matching energy level. For this to occur, the electron must drop to a lower energy state that has an energy difference matching the energy of the interacting photon. The emitted photon and the interacting photon then move off in parallel and with matching phases. That is, the wave patterns of the two photons are synchronized. This physical property is used to make lasers, which can emit a coherent beam of light energy in a narrow frequency band.[89]

Valence and bonding behavior

sunting

Valency is the combining power of an element. It is equal to number of hydrogen atoms that atom can combine or displace in forming compounds.[90] The outermost electron shell of an atom in its uncombined state is known as the valence shell, and the electrons in that shell are called valence electrons. The number of valence electrons determines the bonding behavior with other atoms. Atoms tend to chemically react with each other in a manner that fills (or empties) their outer valence shells.[91] For example, a transfer of a single electron between atoms is a useful approximation for bonds that form between atoms with one-electron more than a filled shell, and others that are one-electron short of a full shell, such as occurs in the compound sodium chloride and other chemical ionic salts. However, many elements display multiple valences, or tendencies to share differing numbers of electrons in different compounds. Thus, chemical bonding between these elements takes many forms of electron-sharing that are more than simple electron transfers. Examples include the element carbon and the organic compounds.[92]

The chemical elements are often displayed in a periodic table that is laid out to display recurring chemical properties, and elements with the same number of valence electrons form a group that is aligned in the same column of the table. (The horizontal rows correspond to the filling of a quantum shell of electrons.) The elements at the far right of the table have their outer shell completely filled with electrons, which results in chemically inert elements known as the noble gases.[93][94]

States

sunting
 
Snapshots illustrating the formation of a Bose–Einstein condensate

Quantities of atoms are found in different states of matter that depend on the physical conditions, such as temperature and pressure. By varying the conditions, materials can transition between solids, liquids, gases and plasmas.[95] Within a state, a material can also exist in different allotropes. An example of this is solid carbon, which can exist as graphite or diamond.[96] Gaseous allotropes exist as well, such as dioxygen and ozone.

At temperatures close to absolute zero, atoms can form a Bose–Einstein condensate, at which point quantum mechanical effects, which are normally only observed at the atomic scale, become apparent on a macroscopic scale.[97][98] This super-cooled collection of atoms then behaves as a single super atom, which may allow fundamental checks of quantum mechanical behavior.[99]

Identification

sunting
 
Scanning tunneling microscope image showing the individual atoms making up this gold (100) surface. The surface atoms deviate from the bulk crystal structure and arrange in columns several atoms wide with pits between them (See surface reconstruction).

The scanning tunneling microscope is a device for viewing surfaces at the atomic level. It uses the quantum tunneling phenomenon, which allows particles to pass through a barrier that would normally be insurmountable. Electrons tunnel through the vacuum between two planar metal electrodes, on each of which is an adsorbed atom, providing a tunneling-current density that can be measured. Scanning one atom (taken as the tip) as it moves past the other (the sample) permits plotting of tip displacement versus lateral separation for a constant current. The calculation shows the extent to which scanning-tunneling-microscope images of an individual atom are visible. It confirms that for low bias, the microscope images the space-averaged dimensions of the electron orbitals across closely packed energy levels—the Fermi level local density of states.[100][101]

An atom can be ionized by removing one of its electrons. The electric charge causes the trajectory of an atom to bend when it passes through a magnetic field. The radius by which the trajectory of a moving ion is turned by the magnetic field is determined by the mass of the atom. The mass spectrometer uses this principle to measure the mass-to-charge ratio of ions. If a sample contains multiple isotopes, the mass spectrometer can determine the proportion of each isotope in the sample by measuring the intensity of the different beams of ions. Techniques to vaporize atoms include inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry, both of which use a plasma to vaporize samples for analysis.[102]

A more area-selective method is electron energy loss spectroscopy, which measures the energy loss of an electron beam within a transmission electron microscope when it interacts with a portion of a sample. The atom-probe tomograph has sub-nanometer resolution in 3-D and can chemically identify individual atoms using time-of-flight mass spectrometry.[103]

Spectra of excited states can be used to analyze the atomic composition of distant stars. Specific light wavelengths contained in the observed light from stars can be separated out and related to the quantized transitions in free gas atoms. These colors can be replicated using a gas-discharge lamp containing the same element.[104] Helium was discovered in this way in the spectrum of the Sun 23 years before it was found on Earth.[105]

Origin and current state

sunting

Atoms form about 4% of the total energy density of the observable Universe, with an average density of about 0.25 atoms/m3.[106] Within a galaxy such as the Milky Way, atoms have a much higher concentration, with the density of matter in the interstellar medium (ISM) ranging from 105 to 109 atoms/m3.[107] The Sun is believed to be inside the Local Bubble, a region of highly ionized gas, so the density in the solar neighborhood is only about 103 atoms/m3.[108] Stars form from dense clouds in the ISM, and the evolutionary processes of stars result in the steady enrichment of the ISM with elements more massive than hydrogen and helium. Up to 95% of the Milky Way's atoms are concentrated inside stars and the total mass of atoms forms about 10% of the mass of the galaxy.[109] (The remainder of the mass is an unknown dark matter.)[110]

Formation

sunting

Electrons are thought to exist in the Universe since early stages of the Big Bang. Atomic nuclei forms in nucleosynthesis reactions. In about three minutes Big Bang nucleosynthesis produced most of the helium, lithium, and deuterium in the Universe, and perhaps some of the beryllium and boron.[111][112][113]

Ubiquitousness and stability of atoms relies on their binding energy, which means that an atom has a lower energy than an unbound system of the nucleus and electrons. Where the temperature is much higher than ionization potential, the matter exists in the form of plasma—a gas of positively charged ions (possibly, bare nuclei) and electrons. When the temperature drops below the ionization potential, atoms become statistically favorable. Atoms (complete with bound electrons) became to dominate over charged particles 380,000 years after the Big Bang—an epoch called recombination, when the expanding Universe cooled enough to allow electrons to become attached to nuclei.[114]

Since the Big Bang, which produced no carbon or heavier elements, atomic nuclei have been combined in stars through the process of nuclear fusion to produce more of the element helium, and (via the triple alpha process) the sequence of elements from carbon up to iron;[115] see stellar nucleosynthesis for details.

Isotopes such as lithium-6, as well as some beryllium and boron are generated in space through cosmic ray spallation.[116] This occurs when a high-energy proton strikes an atomic nucleus, causing large numbers of nucleons to be ejected.

Elements heavier than iron were produced in supernovae through the r-process and in AGB stars through the s-process, both of which involve the capture of neutrons by atomic nuclei.[117] Elements such as lead formed largely through the radioactive decay of heavier elements.[118]

Most of the atoms that make up the Earth and its inhabitants were present in their current form in the nebula that collapsed out of a molecular cloud to form the Solar System. The rest are the result of radioactive decay, and their relative proportion can be used to determine the age of the Earth through radiometric dating.[119][120] Most of the helium in the crust of the Earth (about 99% of the helium from gas wells, as shown by its lower abundance of helium-3) is a product of alpha decay.[121]

There are a few trace atoms on Earth that were not present at the beginning (i.e., not "primordial"), nor are results of radioactive decay. Carbon-14 is continuously generated by cosmic rays in the atmosphere.[122] Some atoms on Earth have been artificially generated either deliberately or as by-products of nuclear reactors or explosions.[123][124] Of the transuranic elements—those with atomic numbers greater than 92—only plutonium and neptunium occur naturally on Earth.[125][126] Transuranic elements have radioactive lifetimes shorter than the current age of the Earth[127] and thus identifiable quantities of these elements have long since decayed, with the exception of traces of plutonium-244 possibly deposited by cosmic dust.[119] Natural deposits of plutonium and neptunium are produced by neutron capture in uranium ore.[128]

The Earth contains approximately 1.33×1050 atoms.[129] Although small numbers of independent atoms of noble gases exist, such as argon, neon, and helium, 99% of the atmosphere is bound in the form of molecules, including carbon dioxide and diatomic oxygen and nitrogen. At the surface of the Earth, an overwhelming majority of atoms combine to form various compounds, including water, salt, silicates and oxides. Atoms can also combine to create materials that do not consist of discrete molecules, including crystals and liquid or solid metals.[130][131] This atomic matter forms networked arrangements that lack the particular type of small-scale interrupted order associated with molecular matter.[132]

Rare and theoretical forms

sunting

Superheavy elements

sunting

While isotopes with atomic numbers higher than lead (82) are known to be radioactive, an "island of stability" has been proposed for some elements with atomic numbers above 103. These superheavy elements may have a nucleus that is relatively stable against radioactive decay.[133] The most likely candidate for a stable superheavy atom, unbihexium, has 126 protons and 184 neutrons.[134]

Exotic matter

sunting

Each particle of matter has a corresponding antimatter particle with the opposite electrical charge. Thus, the positron is a positively charged antielectron and the antiproton is a negatively charged equivalent of a proton. When a matter and corresponding antimatter particle meet, they annihilate each other. Because of this, along with an imbalance between the number of matter and antimatter particles, the latter are rare in the universe. The first causes of this imbalance are not yet fully understood, although theories of baryogenesis may offer an explanation. As a result, no antimatter atoms have been discovered in nature.[135][136] However, in 1996 the antimatter counterpart of the hydrogen atom (antihydrogen) was synthesized at the CERN laboratory in Geneva.[137][138]

Other exotic atoms have been created by replacing one of the protons, neutrons or electrons with other particles that have the same charge. For example, an electron can be replaced by a more massive muon, forming a muonic atom. These types of atoms can be used to test the fundamental predictions of physics.[139][140][141]

See also

sunting
  1. ^ For more recent updates see Interactive Chart of Nuclides (Brookhaven National Laboratory).
  2. ^ A carat is 200 milligrams. By definition, carbon-12 has 0.012 kg per mole. The Avogadro constant defines 6×1023 atoms per mole.

References

sunting
  1. ^ Andrew G. van Melsen (1952). From Atomos to Atom. Mineola, N.Y.: Dover Publications. ISBN 0-486-49584-1.
  2. ^ Dalton, John. "On the Absorption of Gases by Water and Other Liquids", in Memoirs of the Literary and Philosophical Society of Manchester. 1803. Retrieved on August 29, 2007.
  3. ^ Einstein, Albert (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" (PDF). Annalen der Physik (dalam bahasa German). 322 (8): 549–560. Bibcode:1905AnP...322..549E. doi:10.1002/andp.19053220806. Dicapai pada 4 February 2007.CS1 maint: unrecognized language (link)
  4. ^ Mazo, Robert M. (2002). Brownian Motion: Fluctuations, Dynamics, and Applications. Oxford University Press. m/s. 1–7. ISBN 0-19-851567-7. OCLC 48753074.
  5. ^ Lee, Y.K.; Hoon, K. (1995). "Brownian Motion". Imperial College. Diarkibkan daripada yang asal pada 18 December 2007. Dicapai pada 18 December 2007. Unknown parameter |deadurl= ignored (bantuan)
  6. ^ Patterson, G. (2007). "Jean Perrin and the triumph of the atomic doctrine". Endeavour. 31 (2): 50–53. doi:10.1016/j.endeavour.2007.05.003. PMID 17602746.
  7. ^ Thomson, J. J. (August 1901). "On bodies smaller than atoms". The Popular Science Monthly. Bonnier Corp.: 323–335. Dicapai pada 2009-06-21.
  8. ^ "J.J. Thomson". Nobel Foundation. 1906. Dicapai pada 20 December 2007.
  9. ^ Rutherford, E. (1911). "The Scattering of α and β Particles by Matter and the Structure of the Atom" (PDF). Philosophical Magazine. 21 (125): 669–88. doi:10.1080/14786440508637080.
  10. ^ "The Gold Foil Experiment". myweb.usf.edu.
  11. ^ "Frederick Soddy, The Nobel Prize in Chemistry 1921". Nobel Foundation. Dicapai pada 18 January 2008.
  12. ^ Thomson, Joseph John (1913). "Rays of positive electricity". Proceedings of the Royal Society. A. 89 (607): 1–20. Bibcode:1913RSPSA..89....1T. doi:10.1098/rspa.1913.0057.
  13. ^ Stern, David P. (16 May 2005). "The Atomic Nucleus and Bohr's Early Model of the Atom". NASA/Goddard Space Flight Center. Dicapai pada 20 December 2007.
  14. ^ Bohr, Niels (11 December 1922). "Niels Bohr, The Nobel Prize in Physics 1922, Nobel Lecture". Nobel Foundation. Dicapai pada 16 February 2008.
  15. ^ Pais, Abraham (1986). Inward Bound: Of Matter and Forces in the Physical World. New York: Oxford University Press. m/s. 228–230. ISBN 0-19-851971-0.
  16. ^ Lewis, Gilbert N. (1916). "The Atom and the Molecule". Journal of the American Chemical Society. 38 (4): 762–786. doi:10.1021/ja02261a002.
  17. ^ Scerri, Eric R. (2007). The periodic table: its story and its significance. Oxford University Press US. m/s. 205–226. ISBN 0-19-530573-6.
  18. ^ Langmuir, Irving (1919). "The Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society. 41 (6): 868–934. doi:10.1021/ja02227a002.
  19. ^ Scully, Marlan O.; Lamb, Willis E.; Barut, Asim (1987). "On the theory of the Stern-Gerlach apparatus". Foundations of Physics. 17 (6): 575–583. Bibcode:1987FoPh...17..575S. doi:10.1007/BF01882788.
  20. ^ TED-Ed (16 September 2014). "What is the Heisenberg Uncertainty Principle? - Chad Orzel" – melalui YouTube.
  21. ^ Brown, Kevin (2007). "The Hydrogen Atom". MathPages. Dicapai pada 21 December 2007.
  22. ^ Harrison, David M. (2000). "The Development of Quantum Mechanics". University of Toronto. Diarkibkan daripada yang asal pada 25 December 2007. Dicapai pada 21 December 2007. Unknown parameter |deadurl= ignored (bantuan)
  23. ^ Aston, Francis W. (1920). "The constitution of atmospheric neon". Philosophical Magazine. 39 (6): 449–55. doi:10.1080/14786440408636058.
  24. ^ Chadwick, James (12 December 1935). "Nobel Lecture: The Neutron and Its Properties". Nobel Foundation. Dicapai pada 21 December 2007.
  25. ^ Bowden, Mary Ellen (1997). "Otto Hahn, Lise Meitner, and Fritz Strassmann". Chemical achievers : the human face of the chemical sciences. Philadelphia, PA: Chemical Heritage Foundation. m/s. 76–80, 125. ISBN 9780941901123.
  26. ^ "Otto Hahn, Lise Meitner, and Fritz Strassmann". Chemical Heritage Foundation. Dicapai pada 27 October 2016.
  27. ^ Meitner, Lise; Frisch, Otto Robert (1939). "Disintegration of uranium by neutrons: a new type of nuclear reaction". Nature. 143 (3615): 239–240. Bibcode:1939Natur.143..239M. doi:10.1038/143239a0.
  28. ^ Schroeder, M. "Lise Meitner – Zur 125. Wiederkehr Ihres Geburtstages" (dalam bahasa German). Dicapai pada 4 June 2009.CS1 maint: unrecognized language (link)
  29. ^ Crawford, E.; Sime, Ruth Lewin; Walker, Mark (1997). "A Nobel tale of postwar injustice". Physics Today. 50 (9): 26–32. Bibcode:1997PhT....50i..26C. doi:10.1063/1.881933.
  30. ^ Kullander, Sven (28 August 2001). "Accelerators and Nobel Laureates". Nobel Foundation. Dicapai pada 31 January 2008.
  31. ^ "The Nobel Prize in Physics 1990". Nobel Foundation. 17 October 1990. Dicapai pada 31 January 2008.
  32. ^ Demtröder, Wolfgang (2002). Atoms, Molecules and Photons: An Introduction to Atomic- Molecular- and Quantum Physics (ed. 1st). Springer. m/s. 39–42. ISBN 3-540-20631-0. OCLC 181435713.
  33. ^ Woan, Graham (2000). The Cambridge Handbook of Physics. Cambridge University Press. m/s. 8. ISBN 0-521-57507-9. OCLC 224032426.
  34. ^ MacGregor, Malcolm H. (1992). The Enigmatic Electron. Oxford University Press. m/s. 33–37. ISBN 0-19-521833-7. OCLC 223372888.
  35. ^ a b Particle Data Group (2002). "The Particle Adventure". Lawrence Berkeley Laboratory. Diarkibkan daripada yang asal pada 4 January 2007. Dicapai pada 3 January 2007. Unknown parameter |deadurl= ignored (bantuan)
  36. ^ a b Schombert, James (18 April 2006). "Elementary Particles". University of Oregon. Dicapai pada 3 January 2007.
  37. ^ Jevremovic, Tatjana (2005). Nuclear Principles in Engineering. Springer. m/s. 63. ISBN 0-387-23284-2. OCLC 228384008.
  38. ^ Pfeffer, Jeremy I.; Nir, Shlomo (2000). Modern Physics: An Introductory Text. Imperial College Press. m/s. 330–336. ISBN 1-86094-250-4. OCLC 45900880.
  39. ^ Wenner, Jennifer M. (10 October 2007). "How Does Radioactive Decay Work?". Carleton College. Dicapai pada 9 January 2008.
  40. ^ a b c Raymond, David (7 April 2006). "Nuclear Binding Energies". New Mexico Tech. Diarkibkan daripada yang asal pada 1 December 2002. Dicapai pada 3 January 2007. Unknown parameter |dead-url= ignored (bantuan)
  41. ^ Mihos, Chris (23 July 2002). "Overcoming the Coulomb Barrier". Case Western Reserve University. Dicapai pada 13 February 2008.
  42. ^ Staff (30 March 2007). "ABC's of Nuclear Science". Lawrence Berkeley National Laboratory. Diarkibkan daripada yang asal pada 5 December 2006. Dicapai pada 3 January 2007. Unknown parameter |deadurl= ignored (bantuan)
  43. ^ Makhijani, Arjun; Saleska, Scott (2 March 2001). "Basics of Nuclear Physics and Fission". Institute for Energy and Environmental Research. Diarkibkan daripada yang asal pada 16 January 2007. Dicapai pada 3 January 2007. Unknown parameter |deadurl= ignored (bantuan)
  44. ^ Shultis, J. Kenneth; Faw, Richard E. (2002). Fundamentals of Nuclear Science and Engineering. CRC Press. m/s. 10–17. ISBN 0-8247-0834-2. OCLC 123346507.
  45. ^ Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy". American Journal of Physics. 63 (7): 653–658. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828.
  46. ^ Mulliken, Robert S. (1967). "Spectroscopy, Molecular Orbitals, and Chemical Bonding". Science. 157 (3784): 13–24. Bibcode:1967Sci...157...13M. doi:10.1126/science.157.3784.13. PMID 5338306.
  47. ^ a b Brucat, Philip J. (2008). "The Quantum Atom". University of Florida. Diarkibkan daripada yang asal pada 7 December 2006. Dicapai pada 4 January 2007. Unknown parameter |deadurl= ignored (bantuan)
  48. ^ Manthey, David (2001). "Atomic Orbitals". Orbital Central. Diarkibkan daripada yang asal pada 10 January 2008. Dicapai pada 21 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  49. ^ Herter, Terry (2006). "Lecture 8: The Hydrogen Atom". Cornell University. Diarkibkan daripada yang asal pada 22 February 2012. Dicapai pada 14 February 2008. Unknown parameter |deadurl= ignored (bantuan)
  50. ^ Bell, R. E.; Elliott, L. G. (1950). "Gamma-Rays from the Reaction H1(n,γ)D2 and the Binding Energy of the Deuteron". Physical Review. 79 (2): 282–285. Bibcode:1950PhRv...79..282B. doi:10.1103/PhysRev.79.282.
  51. ^ Smirnov, Boris M. (2003). Physics of Atoms and Ions. Springer. m/s. 249–272. ISBN 0-387-95550-X.
  52. ^ Matis, Howard S. (9 August 2000). "The Isotopes of Hydrogen". Guide to the Nuclear Wall Chart. Lawrence Berkeley National Lab. Diarkibkan daripada yang asal pada 18 December 2007. Dicapai pada 21 December 2007. Unknown parameter |deadurl= ignored (bantuan)
  53. ^ Weiss, Rick (17 October 2006). "Scientists Announce Creation of Atomic Element, the Heaviest Yet". Washington Post. Dicapai pada 21 December 2007.
  54. ^ a b Sills, Alan D. (2003). Earth Science the Easy Way. Barron's Educational Series. m/s. 131–134. ISBN 0-7641-2146-4. OCLC 51543743.
  55. ^ Dumé, Belle (23 April 2003). "Bismuth breaks half-life record for alpha decay". Physics World. Diarkibkan daripada yang asal pada 14 December 2007. Dicapai pada 21 December 2007. Unknown parameter |deadurl= ignored (bantuan)
  56. ^ Lindsay, Don (30 July 2000). "Radioactives Missing From The Earth". Don Lindsay Archive. Diarkibkan daripada yang asal pada 28 April 2007. Dicapai pada 23 May 2007. Unknown parameter |deadurl= ignored (bantuan)
  57. ^ Tuli, Jagdish K. (April 2005). "Nuclear Wallet Cards". National Nuclear Data Center, Brookhaven National Laboratory. Dicapai pada 16 April 2011.
  58. ^ a b CRC Handbook (2002).
  59. ^ a b Mills, Ian; Cvitaš, Tomislav; Homann, Klaus; Kallay, Nikola; Kuchitsu, Kozo (1993). Quantities, Units and Symbols in Physical Chemistry (PDF) (ed. 2nd). Oxford: International Union of Pure and Applied Chemistry, Commission on Physiochemical Symbols Terminology and Units, Blackwell Scientific Publications. m/s. 70. ISBN 0-632-03583-8. OCLC 27011505.
  60. ^ Chieh, Chung (22 January 2001). "Nuclide Stability". University of Waterloo. Dicapai pada 4 January 2007.
  61. ^ "Atomic Weights and Isotopic Compositions for All Elements". National Institute of Standards and Technology. Diarkibkan daripada yang asal pada 31 December 2006. Dicapai pada 4 January 2007. Unknown parameter |deadurl= ignored (bantuan)
  62. ^ Audi, G.; Wapstra, A.H.; Thibault, C. (2003). "The Ame2003 atomic mass evaluation (II)" (PDF). Nuclear Physics A. 729 (1): 337–676. Bibcode:2003NuPhA.729..337A. doi:10.1016/j.nuclphysa.2003.11.003.
  63. ^ Ghosh, D. C.; Biswas, R. (2002). "Theoretical calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii". Int. J. Mol. Sci. 3: 87–113. doi:10.3390/i3020087.
  64. ^ Shannon, R. D. (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides". Acta Crystallographica A. 32 (5): 751–767. Bibcode:1976AcCrA..32..751S. doi:10.1107/S0567739476001551.
  65. ^ Dong, Judy (1998). "Diameter of an Atom". The Physics Factbook. Diarkibkan daripada yang asal pada 4 November 2007. Dicapai pada 19 November 2007. Unknown parameter |deadurl= ignored (bantuan)
  66. ^ Zumdahl, Steven S. (2002). Introductory Chemistry: A Foundation (ed. 5th). Houghton Mifflin. ISBN 0-618-34342-3. OCLC 173081482. Diarkibkan daripada yang asal pada 4 March 2008. Dicapai pada 5 February 2008. Unknown parameter |deadurl= ignored (bantuan)
  67. ^ Bethe, Hans (1929). "Termaufspaltung in Kristallen". Annalen der Physik. 3 (2): 133–208. Bibcode:1929AnP...395..133B. doi:10.1002/andp.19293950202.
  68. ^ Birkholz, Mario (1995). "Crystal-field induced dipoles in heteropolar crystals – I. concept". Z. Phys. B. 96: 325–332. Bibcode:1995ZPhyB..96..325B. doi:10.1007/BF01313054.
  69. ^ Birkholz, M.; Rudert, R. (2008). "Interatomic distances in pyrite-structure disulfides – a case for ellipsoidal modeling of sulfur ions]". phys. stat. sol. b. 245: 1858–1864. Bibcode:2008PSSBR.245.1858B. doi:10.1002/pssb.200879532.
  70. ^ Birkholz, M. (2014). "Modeling the Shape of Ions in Pyrite-Type Crystals". Crystals. 4: 390–403. doi:10.3390/cryst4030390.
  71. ^ Staff (2007). "Small Miracles: Harnessing nanotechnology". Oregon State University. Dicapai pada 7 January 2007.—describes the width of a human hair as 105 nm and 10 carbon atoms as spanning 1 nm.
  72. ^ Padilla, Michael J.; Miaoulis, Ioannis; Cyr, Martha (2002). Prentice Hall Science Explorer: Chemical Building Blocks. Upper Saddle River, New Jersey USA: Prentice-Hall, Inc. m/s. 32. ISBN 0-13-054091-9. OCLC 47925884. There are 2,000,000,000,000,000,000,000 (that's 2 sextillion) atoms of oxygen in one drop of water—and twice as many atoms of hydrogen.
  73. ^ Feynman, Richard (1995). Six Easy Pieces. The Penguin Group. m/s. 5. ISBN 978-0-14-027666-4. OCLC 40499574.
  74. ^ a b "Radioactivity". Splung.com. Diarkibkan daripada yang asal pada 4 December 2007. Dicapai pada 19 December 2007. Unknown parameter |deadurl= ignored (bantuan)
  75. ^ L'Annunziata, Michael F. (2003). Handbook of Radioactivity Analysis. Academic Press. m/s. 3–56. ISBN 0-12-436603-1. OCLC 16212955.
  76. ^ Firestone, Richard B. (22 May 2000). "Radioactive Decay Modes". Berkeley Laboratory. Dicapai pada 7 January 2007.
  77. ^ Hornak, J. P. (2006). "Chapter 3: Spin Physics". The Basics of NMR. Rochester Institute of Technology. Diarkibkan daripada yang asal pada 3 February 2007. Dicapai pada 7 January 2007. Unknown parameter |deadurl= ignored (bantuan)
  78. ^ a b Schroeder, Paul A. (25 February 2000). "Magnetic Properties". University of Georgia. Diarkibkan daripada yang asal pada 29 April 2007. Dicapai pada 7 January 2007.
  79. ^ Goebel, Greg (1 September 2007). "[4.3] Magnetic Properties of the Atom". Elementary Quantum Physics. In The Public Domain website. Dicapai pada 7 January 2007.
  80. ^ Yarris, Lynn (Spring 1997). "Talking Pictures". Berkeley Lab Research Review. Diarkibkan daripada yang asal pada 13 January 2008. Dicapai pada 9 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  81. ^ Liang, Z.-P.; Haacke, E. M. (1999). Webster, J. G. (penyunting). Encyclopedia of Electrical and Electronics Engineering: Magnetic Resonance Imaging. vol. 2. John Wiley & Sons. m/s. 412–426. ISBN 0-471-13946-7. |volume= has extra text (bantuan)
  82. ^ Zeghbroeck, Bart J. Van (1998). "Energy levels". Shippensburg University. Diarkibkan daripada yang asal pada 15 January 2005. Dicapai pada 23 December 2007. Unknown parameter |dead-url= ignored (bantuan)
  83. ^ Fowles, Grant R. (1989). Introduction to Modern Optics. Courier Dover Publications. m/s. 227–233. ISBN 0-486-65957-7. OCLC 18834711.
  84. ^ Martin, W. C.; Wiese, W. L. (May 2007). "Atomic Spectroscopy: A Compendium of Basic Ideas, Notation, Data, and Formulas". National Institute of Standards and Technology. Diarkibkan daripada yang asal pada 8 February 2007. Dicapai pada 8 January 2007. Unknown parameter |deadurl= ignored (bantuan)
  85. ^ "Atomic Emission Spectra — Origin of Spectral Lines". Avogadro Web Site. Dicapai pada 10 August 2006.
  86. ^ Fitzpatrick, Richard (16 February 2007). "Fine structure". University of Texas at Austin. Dicapai pada 14 February 2008.
  87. ^ Weiss, Michael (2001). "The Zeeman Effect". University of California-Riverside. Diarkibkan daripada yang asal pada 2 February 2008. Dicapai pada 6 February 2008. Unknown parameter |deadurl= ignored (bantuan)
  88. ^ Beyer, H. F.; Shevelko, V. P. (2003). Introduction to the Physics of Highly Charged Ions. CRC Press. m/s. 232–236. ISBN 0-7503-0481-2. OCLC 47150433.
  89. ^ Watkins, Thayer. "Coherence in Stimulated Emission". San José State University. Diarkibkan daripada yang asal pada 12 January 2008. Dicapai pada 23 December 2007. Unknown parameter |deadurl= ignored (bantuan)
  90. ^ oxford dictionary – valency
  91. ^ Reusch, William (16 July 2007). "Virtual Textbook of Organic Chemistry". Michigan State University. Diarkibkan daripada yang asal pada 29 October 2007. Dicapai pada 11 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  92. ^ "Covalent bonding – Single bonds". chemguide. 2000.
  93. ^ Husted, Robert; dll. (11 December 2003). "Periodic Table of the Elements". Los Alamos National Laboratory. Diarkibkan daripada yang asal pada 10 January 2008. Dicapai pada 11 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  94. ^ Baum, Rudy (2003). "It's Elemental: The Periodic Table". Chemical & Engineering News. Dicapai pada 11 January 2008.
  95. ^ Goodstein, David L. (2002). States of Matter. Courier Dover Publications. m/s. 436–438. ISBN 0-13-843557-X.
  96. ^ Brazhkin, Vadim V. (2006). "Metastable phases, phase transformations, and phase diagrams in physics and chemistry". Physics-Uspekhi. 49 (7): 719–24. Bibcode:2006PhyU...49..719B. doi:10.1070/PU2006v049n07ABEH006013.
  97. ^ Myers, Richard (2003). The Basics of Chemistry. Greenwood Press. m/s. 85. ISBN 0-313-31664-3. OCLC 50164580.
  98. ^ Staff (9 October 2001). "Bose-Einstein Condensate: A New Form of Matter". National Institute of Standards and Technology. Diarkibkan daripada yang asal pada 3 January 2008. Dicapai pada 16 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  99. ^ Colton, Imogen; Fyffe, Jeanette (3 February 1999). "Super Atoms from Bose-Einstein Condensation". The University of Melbourne. Diarkibkan daripada yang asal pada 29 August 2007. Dicapai pada 6 February 2008.
  100. ^ Jacox, Marilyn; Gadzuk, J. William (November 1997). "Scanning Tunneling Microscope". National Institute of Standards and Technology. Diarkibkan daripada yang asal pada 7 January 2008. Dicapai pada 11 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  101. ^ "The Nobel Prize in Physics 1986". The Nobel Foundation. Dicapai pada 11 January 2008.—in particular, see the Nobel lecture by G. Binnig and H. Rohrer.
  102. ^ Jakubowski, N.; Moens, Luc; Vanhaecke, Frank (1998). "Sector field mass spectrometers in ICP-MS". Spectrochimica Acta Part B: Atomic Spectroscopy. 53 (13): 1739–63. Bibcode:1998AcSpe..53.1739J. doi:10.1016/S0584-8547(98)00222-5.
  103. ^ Müller, Erwin W.; Panitz, John A.; McLane, S. Brooks (1968). "The Atom-Probe Field Ion Microscope". Review of Scientific Instruments. 39 (1): 83–86. Bibcode:1968RScI...39...83M. doi:10.1063/1.1683116.
  104. ^ Lochner, Jim; Gibb, Meredith; Newman, Phil (30 April 2007). "What Do Spectra Tell Us?". NASA/Goddard Space Flight Center. Diarkibkan daripada yang asal pada 16 January 2008. Dicapai pada 3 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  105. ^ Winter, Mark (2007). "Helium". WebElements. Diarkibkan daripada yang asal pada 30 December 2007. Dicapai pada 3 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  106. ^ Hinshaw, Gary (10 February 2006). "What is the Universe Made Of?". NASA/WMAP. Diarkibkan daripada yang asal pada 31 December 2007. Dicapai pada 7 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  107. ^ Choppin, Gregory R.; Liljenzin, Jan-Olov; Rydberg, Jan (2001). Radiochemistry and Nuclear Chemistry. Elsevier. m/s. 441. ISBN 0-7506-7463-6. OCLC 162592180.
  108. ^ Davidsen, Arthur F. (1993). "Far-Ultraviolet Astronomy on the Astro-1 Space Shuttle Mission". Science. 259 (5093): 327–34. Bibcode:1993Sci...259..327D. doi:10.1126/science.259.5093.327. PMID 17832344.
  109. ^ Lequeux, James (2005). The Interstellar Medium. Springer. m/s. 4. ISBN 3-540-21326-0. OCLC 133157789.
  110. ^ Smith, Nigel (6 January 2000). "The search for dark matter". Physics World. Diarkibkan daripada yang asal pada 16 February 2008. Dicapai pada 14 February 2008. Unknown parameter |deadurl= ignored (bantuan)
  111. ^ Croswell, Ken (1991). "Boron, bumps and the Big Bang: Was matter spread evenly when the Universe began? Perhaps not; the clues lie in the creation of the lighter elements such as boron and beryllium". New Scientist (1794): 42. Diarkibkan daripada yang asal pada 7 February 2008. Dicapai pada 14 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  112. ^ Copi, Craig J.; Schramm, DN; Turner, MS (1995). "Big-Bang Nucleosynthesis and the Baryon Density of the Universe". Science. 267 (5195): 192–99. arXiv:astro-ph/9407006. Bibcode:1995Sci...267..192C. doi:10.1126/science.7809624. PMID 7809624.
  113. ^ Hinshaw, Gary (15 December 2005). "Tests of the Big Bang: The Light Elements". NASA/WMAP. Diarkibkan daripada yang asal pada 17 January 2008. Dicapai pada 13 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  114. ^ Abbott, Brian (30 May 2007). "Microwave (WMAP) All-Sky Survey". Hayden Planetarium. Diarkibkan daripada yang asal pada 13 February 2013. Dicapai pada 13 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  115. ^ Hoyle, F. (1946). "The synthesis of the elements from hydrogen". Monthly Notices of the Royal Astronomical Society. 106: 343–83. Bibcode:1946MNRAS.106..343H. doi:10.1093/mnras/106.5.343.
  116. ^ Knauth, D. C.; Knauth, D. C.; Lambert, David L.; Crane, P. (2000). "Newly synthesized lithium in the interstellar medium". Nature. 405 (6787): 656–58. doi:10.1038/35015028. PMID 10864316.
  117. ^ Mashnik, Stepan G. (2000). "On Solar System and Cosmic Rays Nucleosynthesis and Spallation Processes". arXiv:astro-ph/0008382 [astro-ph].
  118. ^ Kansas Geological Survey (4 May 2005). "Age of the Earth". University of Kansas. Dicapai pada 14 January 2008.
  119. ^ a b Manuel 2001, m/s. 407–430, 511–519.
  120. ^ Dalrymple, G. Brent (2001). "The age of the Earth in the twentieth century: a problem (mostly) solved". Geological Society, London, Special Publications. 190 (1): 205–21. Bibcode:2001GSLSP.190..205D. doi:10.1144/GSL.SP.2001.190.01.14. Dicapai pada 14 January 2008.
  121. ^ Anderson, Don L.; Foulger, G. R.; Meibom, Anders (2 September 2006). "Helium: Fundamental models". MantlePlumes.org. Diarkibkan daripada yang asal pada 8 February 2007. Dicapai pada 14 January 2007. Unknown parameter |deadurl= ignored (bantuan)
  122. ^ Pennicott, Katie (10 May 2001). "Carbon clock could show the wrong time". PhysicsWeb. Diarkibkan daripada yang asal pada 15 December 2007. Dicapai pada 14 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  123. ^ Yarris, Lynn (27 July 2001). "New Superheavy Elements 118 and 116 Discovered at Berkeley Lab". Berkeley Lab. Diarkibkan daripada yang asal pada 9 January 2008. Dicapai pada 14 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  124. ^ Diamond, H; dll. (1960). "Heavy Isotope Abundances in Mike Thermonuclear Device". Physical Review. 119 (6): 2000–04. Bibcode:1960PhRv..119.2000D. doi:10.1103/PhysRev.119.2000.
  125. ^ Poston Sr.; John W. (23 March 1998). "Do transuranic elements such as plutonium ever occur naturally?". Scientific American.
  126. ^ Keller, C. (1973). "Natural occurrence of lanthanides, actinides, and superheavy elements". Chemiker Zeitung. 97 (10): 522–30. OSTI 4353086.
  127. ^ Zaider, Marco; Rossi, Harald H. (2001). Radiation Science for Physicians and Public Health Workers. Springer. m/s. 17. ISBN 0-306-46403-9. OCLC 44110319.
  128. ^ "Oklo Fossil Reactors". Curtin University of Technology. Diarkibkan daripada yang asal pada 18 December 2007. Dicapai pada 15 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  129. ^ Weisenberger, Drew. "How many atoms are there in the world?". Jefferson Lab. Dicapai pada 16 January 2008.
  130. ^ Pidwirny, Michael. "Fundamentals of Physical Geography". University of British Columbia Okanagan. Diarkibkan daripada yang asal pada 21 January 2008. Dicapai pada 16 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  131. ^ Anderson, Don L. (2002). "The inner inner core of Earth". Proceedings of the National Academy of Sciences. 99 (22): 13966–68. Bibcode:2002PNAS...9913966A. doi:10.1073/pnas.232565899. PMC 137819. PMID 12391308.
  132. ^ Pauling, Linus (1960). The Nature of the Chemical Bond. Cornell University Press. m/s. 5–10. ISBN 0-8014-0333-2. OCLC 17518275.
  133. ^ Anonymous (2 October 2001). "Second postcard from the island of stability". CERN Courier. Diarkibkan daripada yang asal pada 3 February 2008. Dicapai pada 14 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  134. ^ Jacoby, Mitch (2006). "As-yet-unsynthesized superheavy atom should form a stable diatomic molecule with fluorine". Chemical & Engineering News. 84 (10): 19. doi:10.1021/cen-v084n010.p019a.
  135. ^ Koppes, Steve (1 March 1999). "Fermilab Physicists Find New Matter-Antimatter Asymmetry". University of Chicago. Dicapai pada 14 January 2008.
  136. ^ Cromie, William J. (16 August 2001). "A lifetime of trillionths of a second: Scientists explore antimatter". Harvard University Gazette. Dicapai pada 14 January 2008.
  137. ^ Hijmans, Tom W. (2002). "Particle physics: Cold antihydrogen". Nature. 419 (6906): 439–40. Bibcode:2002Natur.419..439H. doi:10.1038/419439a. PMID 12368837.
  138. ^ Staff (30 October 2002). "Researchers 'look inside' antimatter". BBC News. Dicapai pada 14 January 2008.
  139. ^ Barrett, Roger (1990). "The Strange World of the Exotic Atom". New Scientist (1728): 77–115. Diarkibkan daripada yang asal pada 21 December 2007. Dicapai pada 4 January 2008. Unknown parameter |deadurl= ignored (bantuan)
  140. ^ Indelicato, Paul (2004). "Exotic Atoms". Physica Scripta. T112 (1): 20–26. arXiv:physics/0409058. Bibcode:2004PhST..112...20I. doi:10.1238/Physica.Topical.112a00020.
  141. ^ Ripin, Barrett H. (July 1998). "Recent Experiments on Exotic Atoms". American Physical Society. Diarkibkan daripada yang asal pada 2016-05-17. Dicapai pada 15 February 2008. Unknown parameter |dead-url= ignored (bantuan)

Sources

sunting
  • Manuel, Oliver (2001). Origin of Elements in the Solar System: Implications of Post-1957 Observations. Springer. ISBN 0-306-46562-0. OCLC 228374906.CS1 maint: ref=harv (link)

Further reading

sunting
sunting

Templat:Particles Templat:Composition Templat:Biological organisation