概要
Version of the Triple Spiral symbol (see Image:Triple-Spiral-Symbol.svg) with the area enclosed between the spirals filled in (and mirror-reflected with respect to Image:Triple-Spiral-Symbol.svg). For a less elaborate triskelion symbol, see Image:Triskele-Symbol-spiral.svg or Image:Triskele-Symbol-spiral-five-thirds-turns.svg -- for a more elaborate version, see Image:Triple-Spiral-Symbol-4turns-filled.svg. For "wheeled" forms of the spiral triskelion/triple spiral symbol, see Image:Wheeled-Triskelion-basic.svg , Image:Roissy triskelion iron ring signet.png , Image:Triple-spiral-wheeled-simple.svg , or Image:Triskelion-spiral-threespoked-inspiral.svg . For a spiral triskelion with a hollow triangle in the center, see Image:Triskele-hollow-triangle.svg . For versions of a triple-spiral labyrinth, see Image:Triple-Spiral-labyrinth.svg and Image:Triple-Spiral-labyrinth-variant.svg .
SVG version of Image:Triple-Spiral-Symbol-filled.png .
Converted from the following PostScript code:
%!
/archimdouble{
%%%%%%%%%%%%%%%%
% PostScript program to display an Archimedean spiral by approximating
% it with Bezier curves. Can display a double spiral (two spirals
% rotated by 180 degrees with respect to each other).
%%% Parameters:
% centerx = horizontal coordinate of center of spiral
% centery = vertical coordinate of center of spiral
% rotf = degrees to rotate
/sepwid 110 def % width separating successive turnings of spiral
% (half this if double spiral is selected)
% incrm = insert a curve point every these degrees
/sweeps swp2 def % number of 360 degree turnings to show
% double - 0 to display single spiral, else double
%%% Procedures:
/pi 3.1415926535898 def/radians 57.295779513082 def
/sepwid sepwid pi div 2 div def
gsave centerx centery translate rotf rotate
/aspiral{/prevbezy 0 def/first 1 def
lower incrm sweeps 360 mul{7{dup}repeat
phase add cos/costh exch def
phase add sin/sinth exch def
costh mul radians div/thcosth exch def
sinth mul radians div/thsinth exch def
thcosth sepwid mul/x exch def
thsinth sepwid mul/y exch def
/slope sinth thcosth add costh thsinth sub div def
sinth 0 gt sinth 0 eq costh -1 eq and or{/flag -1 def}{/flag 1
def}ifelse
/A exch def A 49.29348 lt A 180 gt A 196.273450852 lt and A 360
gt A 368.8301 lt and A 540 gt A 545.9907 lt and A 720 gt A
724.5217 lt and A 900 gt A 903.6281968 lt and or or or or
or{/flag flag neg def}if
incrm sub 3{dup}repeat phase add cos sepwid mul mul radians div
/prevx exch def phase add sin sepwid mul mul radians div
/prevy exch def
incrm add 3{dup}repeat phase add cos sepwid mul mul radians div
/nextx exch def phase add sin sepwid mul mul radians div
/nexty exch def
/prevdist x prevx sub dup mul y prevy sub dup mul add sqrt pi
div def
/nextdist x nextx sub dup mul y nexty sub dup mul add sqrt pi
div def
/normaliz slope slope mul 1 add sqrt def
0 eq{0 0 moveto/prevbezx phase cos nextdist mul def/first 0 def
}{first 1 eq{x y moveto/first 0 def}{prevbezx prevbezy x 1
flag mul normaliz div prevdist mul sub y slope flag mul
normaliz div prevdist mul sub x y curveto}ifelse
/prevbezx x 1 flag mul normaliz div nextdist mul add def
/prevbezy y slope flag mul normaliz div nextdist mul add def}
ifelse}
for stroke}def
/phase 0 def aspiral
%%% If different sweeps parameter for second spiral, define here:
/sweeps 2.67 def
%%%
double 0 ne{/phase 180 def aspiral}if grestore
%%%%%%%%%%%%%%%%
}def
gsave
618.5 0 translate
-.4875 dup neg scale %%% decrease to .47 to fit on A4-size page
-2 rotate
/lower 0 def/double 1 def/swp2 3 def/incrm 15 def
/centerx 304 def/centery 550 def/rotf 0 def archimdouble
/centerx 927.334 def/centery 550 def/rotf 120 def archimdouble
/centerx 615.667 def/centery 1089.823 def/rotf 240 def archimdouble
/lower 1103.4 def/double 0 def/swp2 1117 360 div def/incrm 13.5 def
/centerx 304 def/centery 550 def/rotf 0 def archimdouble
/centerx 927.334 def/centery 550 def/rotf 120 def archimdouble
/centerx 615.667 def/centery 1089.823 def/rotf 240 def archimdouble
grestore
showpage
%EOF
ライセンス
Public domainPublic domainfalsefalse
|
|
この作品の著作権者である私は、この作品についての権利を放棄しパブリックドメインとします。これは全世界で適用されます。 一部の国では、これが法的に可能ではない場合があります。その場合は、次のように宣言します。 私は、あらゆる人に対して、法により必要とされている条件を除き、如何なる条件も課すことなく、あらゆる目的のためにこの著作物を使用する権利を与えます。
|