Property |
Value |
dbo:abstract
|
- 極限定理(きょくげんていり,英: limit theorems)とは塑性変形におけるの基礎となる定理で、上界定理(じょうかいていり、Upper bound theorem)と下界定理(かかいていり、Lower bound theorem)がある。また、確率・統計学では、がある。中央極限定理の特別な場合が、Laplaceの極限定理(ラプラスの定理)である。 上界定理と下界定理により定式化された極限解析から、極限荷重の上界値と下界値をそれぞれ求めることができる。もし、極限荷重の上界値と下界値が一致すれば、それが真の極限荷重となる。構造が複雑になり、極限荷重の上界値と下界値が一致しなくても、真の極限荷重はそれらの間にあることが分かるので、およその値は推測できる。 (ja)
- 極限定理(きょくげんていり,英: limit theorems)とは塑性変形におけるの基礎となる定理で、上界定理(じょうかいていり、Upper bound theorem)と下界定理(かかいていり、Lower bound theorem)がある。また、確率・統計学では、がある。中央極限定理の特別な場合が、Laplaceの極限定理(ラプラスの定理)である。 上界定理と下界定理により定式化された極限解析から、極限荷重の上界値と下界値をそれぞれ求めることができる。もし、極限荷重の上界値と下界値が一致すれば、それが真の極限荷重となる。構造が複雑になり、極限荷重の上界値と下界値が一致しなくても、真の極限荷重はそれらの間にあることが分かるので、およその値は推測できる。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2211 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-en:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- 極限定理(きょくげんていり,英: limit theorems)とは塑性変形におけるの基礎となる定理で、上界定理(じょうかいていり、Upper bound theorem)と下界定理(かかいていり、Lower bound theorem)がある。また、確率・統計学では、がある。中央極限定理の特別な場合が、Laplaceの極限定理(ラプラスの定理)である。 上界定理と下界定理により定式化された極限解析から、極限荷重の上界値と下界値をそれぞれ求めることができる。もし、極限荷重の上界値と下界値が一致すれば、それが真の極限荷重となる。構造が複雑になり、極限荷重の上界値と下界値が一致しなくても、真の極限荷重はそれらの間にあることが分かるので、およその値は推測できる。 (ja)
- 極限定理(きょくげんていり,英: limit theorems)とは塑性変形におけるの基礎となる定理で、上界定理(じょうかいていり、Upper bound theorem)と下界定理(かかいていり、Lower bound theorem)がある。また、確率・統計学では、がある。中央極限定理の特別な場合が、Laplaceの極限定理(ラプラスの定理)である。 上界定理と下界定理により定式化された極限解析から、極限荷重の上界値と下界値をそれぞれ求めることができる。もし、極限荷重の上界値と下界値が一致すれば、それが真の極限荷重となる。構造が複雑になり、極限荷重の上界値と下界値が一致しなくても、真の極限荷重はそれらの間にあることが分かるので、およその値は推測できる。 (ja)
|
rdfs:label
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |