動径分布関数(どうけいぶんぷかんすう、英: radial distribution function)とは、等方的な系(または角度依存性を近似的に無視できる系、球対称な系)の中で、ある物理量の分布が原点からの距離 r のみの関数である場合に、その分布を表す関数である。 非等方的な系に対しては、分布関数を2種類の角度で積分したもので考える。 状況に応じて種々の定義がなされるので注意が必要である。
動径分布関数(どうけいぶんぷかんすう、英: radial distribution function)とは、等方的な系(または角度依存性を近似的に無視できる系、球対称な系)の中で、ある物理量の分布が原点からの距離 r のみの関数である場合に、その分布を表す関数である。 非等方的な系に対しては、分布関数を2種類の角度で積分したもので考える。 状況に応じて種々の定義がなされるので注意が必要である。 (ja)
動径分布関数(どうけいぶんぷかんすう、英: radial distribution function)とは、等方的な系(または角度依存性を近似的に無視できる系、球対称な系)の中で、ある物理量の分布が原点からの距離 r のみの関数である場合に、その分布を表す関数である。 非等方的な系に対しては、分布関数を2種類の角度で積分したもので考える。 状況に応じて種々の定義がなされるので注意が必要である。 (ja)
動径分布関数(どうけいぶんぷかんすう、英: radial distribution function)とは、等方的な系(または角度依存性を近似的に無視できる系、球対称な系)の中で、ある物理量の分布が原点からの距離 r のみの関数である場合に、その分布を表す関数である。 非等方的な系に対しては、分布関数を2種類の角度で積分したもので考える。 状況に応じて種々の定義がなされるので注意が必要である。 (ja)
動径分布関数(どうけいぶんぷかんすう、英: radial distribution function)とは、等方的な系(または角度依存性を近似的に無視できる系、球対称な系)の中で、ある物理量の分布が原点からの距離 r のみの関数である場合に、その分布を表す関数である。 非等方的な系に対しては、分布関数を2種類の角度で積分したもので考える。 状況に応じて種々の定義がなされるので注意が必要である。 (ja)