Լայբնիցի շարք
Լայբնիցի շարք, շարքն ուսումնասիրած գերմանացի մաթեմատիկոս Լայբնիցի անունով կոչված նշանահեթափոխ շարք (չնայած նրան, որ այդ շարքը հայտնի է եղել ավելի շուտ).
Այս շարքի զուգամիտությունն անմիջապես հետևում է Լայբնիցի նշանահերթափոխ շարքերի մասին թեորեմից։ Լայբնիցը ցույց տվեց, որ շարքի գումարը հավասար է Այս հայտնագործությունը առաջին անգամ ցույց տվեց, որ պի թիվը, որը սկզբնապես սահմանված է երկրաչափության մեջ, Իրականում համընդհանուր մաթեմատիկական հաստատուն է. հետագայում այս փաստը մշտապես նոր հաստատում է գտել։
Զուգամիտության արագություն
[խմբագրել | խմբագրել կոդը]Լայբնիցի շարքը զուգամիտում է շատ դանդաղ։ Ստորև բերված աղյուսակը ցույց է տալիս շարքին զուգամիտության արագությունը՝ բազմապատկած չորսով։
n (Շարքի անդամների թիվը) |
(Մասնակի գումար, ճիշտ նշաններն ընգծված են սև գույնով) |
Հարաբերական ճշգրչտություն |
---|---|---|
2 | 2,666666666666667 | 0,848826363156775 |
4 | 2,895238095238095 | 0,921582908570213 |
8 | 3,017071817071817 | 0,960363786700453 |
16 | 3,079153394197426 | 0,980124966449415 |
32 | 3,110350273698686 | 0,990055241612751 |
64 | 3,125968606973288 | 0,995026711499770 |
100 | 3,131592903558553 | 0,996816980705689 |
1.000 | 3,140592653839793 | 0,999681690193394 |
10.000 | 3,141492653590043 | 0,999968169011461 |
100.000 | 3,141582653589793 | 0,999996816901138 |
1.000.000 | 3,141591653589793 | 0,999999681690114 |
10.000.000 | 3,141592553589793 | 0,999999968169011 |
100.000.000 | 3,141592643589793 | 0,999999996816901 |
1.000.000.000 | 3,141592652589793 | 0,999999999681690 |
Պատմություն
[խմբագրել | խմբագրել կոդը]Լայբնիցի շարքը հեշտությամբ ստացվում է արկտանգենսի՝ Թեյլորի շարքի վերլուծմամբ[1].
Տեղադրելով մենք ստանում ենք Լայբնիցի շարքը։
Արկտանգենսի համար Թեյլորի շարքն առաջին անգամ առաջ բերեց Մաթեմատիկոս Մադխավան, ով Կերալայի աստղագիտության և մաթիմատիկայի դպրոցի հիմնադիրն էր (XIV դար)։ Մեդխավան օգտագործեց շարքը[2][3] թիվը հաշվելու համար։ Սակայն լայբնիցի շարքը -ով, ինչպես ցույց է տրված վերևում, զուգամիտում է շատ դանդաղ, այդ պատճառով Մեդխավան տեղադրեց և ստացավ ավելի արագ զուգամիտող շարք[4]։
Առաջին 21 գումարելիների գումարը տալիս է , ընդ որում բոլոր նշանները, բացի վերջինից, ճիշտ են[5]։
Մեդխավայի և իր աշակերտների ջանքերը հայտնի չէին Եվրոպայում XVII դարում, և արկտանգենսի վերլուծումը իրենցից անկախ հայտնագործեցին Գրեգորի Ջեյմսը (1671) և Լայբնիցը (1676)։ Այդ պատճառով, որոշ աղբյուրներ առաջարկում են շարքն անվանել «Մադխավա-Լայբնիցի շարք» կամ «Գրեգորի-Լայբնիցի շարք»։ Գրեգորին, այնուամենայնիվ, աշդ շարքը չէր կապում թվի հետ։
Զուգամիտության արագացում
[խմբագրել | խմբագրել կոդը]Լայբնիցի շարքի ևս մեկ ձևափոխություն, որն այն դարձնում է թվի հաշվարկի համար ավելի պիտանի, դա այդ շարքի անդամների զույգ առ զույգ միավորումն է։ Արդյունքում ունենում ենք հետևյալ շարքը.
Հաշվարկի հետագա օպտիմալացման համար կարելի է կիրառել Էյլեր-Մակլորենի բանաձևը և օգտագործելով թվային ինտեգրման մեթոդները։
Տես նաև
[խմբագրել | խմբագրել կոդը]Ծանոթագրություններ
[խմբագրել | խմբագրել կոդը]- ↑ Фихтенгольц, 2003, էջ 401
- ↑ Паплаускас А. Б. Доньютоновский период развития бесконечных рядов. Часть I // Историко-математические исследования. — М.: Наука, 1973. — Т. XVIII. — С. 104—131.
- ↑ C. T. Rajagopal and M. S. Rangachari On an untapped source of medieval Keralese Mathematics(անգլ.) // Archive for History of Exact Sciences : journal. — 1978. — Т. 18. — С. 89—102. — Архивировано из первоисточника 27 Սեպտեմբերի 2020.
- ↑ Вездесущее число «пи», 2007, էջ 47
- ↑ R C Gupta Madhava's and other medieval Indian values of pi(անգլ.) // Math. Education. — 1975. — Т. 9. — № 3. — С. B45—B48.
Գրականություն
[խմբագրել | խմբագրել կոդը]- Жуков А. В. Вездесущее число «пи». — 2-е изд. — М.: Издательство ЛКИ, 2007. — 216 с. — ISBN 978-5-382-00174-6
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — М.: ФИЗМАТЛИТ, 2003. — Т. 2. — 864 с. — ISBN 5-9221-0157-9