Aller au contenu

Discussion:Constante limite de Laplace

Le contenu de la page n’est pas pris en charge dans d’autres langues.
Une page de Wikipédia, l'encyclopédie libre.
Autres discussions [liste]
  • Admissibilité
  • Neutralité
  • Droit d'auteur
  • Article de qualité
  • Bon article
  • Lumière sur
  • À faire
  • Archives
  • Commons

Lien entre la constante limite-de-Laplace L = A 033259 et a = A085984  := 1.199 678...

[modifier le code]

--Guerinsylvie (discuter) 17 mars 2019 à 17:26 (CET) : Juste pour préciser ce qui est indiqué dans l'article :[répondre]

L = max t/ch(t) pour une valeur de t égale à a ,

soit après un petit calcul,

donc

et aussi

donc au total,

[et bien sûr, en passant au gudermannien, ,(ou bien ), on aura alpha = 56° 28' = 0.9855 rd ; ainsi que son complémentaire beta ~33°33'~0.5853 rd]

Bien sûr, d'autres fois , on trouvera et  ; et  ;

Cette ubiquitous value de L ( donc de a ) la rend courante dans d'autres situations. Un des exemples est : en capillarité ( tension superficielle ) , dans l'expérience de la caténoïde , la distance maximale d entre anneaux de diamètre D est telle que d/D = L ( cf Mathworld capillarité ), le rayon de gorge du waist = (L/a)R = 0.552.R , ce qui permet de construire la figure du diabolo de Laplace-Plateau, AA'BB' , les diagonales AB' et BA' étant tangentes à la méridienne de la caténoïde , as usual.

Je ne vois pas ce que la règle de L'Hôpital vient faire dans une recherche d'extremum.
atteint son max, , pour , donc (évidemment) etc.
Anne, 21 h 40
--Guerinsylvie (discuter) 25 juillet 2019 à 16:54 (CEST)Bonjour Anne, I agree with you ; je ne sais comment appeler cette astuce de term-S : au point a du maximum L, f'/g' = f/ g = L_max ( en fait on dérive logarithmiquement f'/f - g'/g , et puis on ré-agence les termes, on appelait cela "astuce de L'Hopital") ( mais je m'en fous ). Soit! Votre calcul est moins compact ; mais ok, c'est tellement simple.[répondre]