Fermat’n suuri lause
Fermat’n suuri lause, Fermat’n viimeinen teoreema tai lyhyesti Fermat’n lause on matemaatikko Pierre de Fermat’n 1600-luvulla esittämä lukuteoreettinen väite:
kun on luonnollinen luku ja suurempi kuin .
Väite pitää paikkansa, mutta tämän todisti vasta Andrew Wiles 1990-luvulla. Väite pysyi siis yli 300 vuotta todistamattomana. Lausetta kutsutaan suureksi erotukseksi Fermat’n pienestä lauseesta, joka käsittelee kokonaan eri asiaa.
Historiaa
muokkaa»Toisaalta on mahdotonta jakaa kuutiota kahdeksi kuutioksi, neljättä potenssia kahdeksi neljänneksi potenssiksi tai yleisemmin mitään kahta korkeampaa potenssia kahdeksi saman asteen potenssiksi. Olen keksinyt siihen todella ihmeellisen todistuksen, jolle tämä marginaali ei kuitenkaan riitä»
(Pierre de Fermat[1])
Fermat kirjoitti kuuluisan lauseensa vuonna 1637 Diofantoksen Arithmetican marginaaliin.[2] Väittämän alapuolelle hän kirjoitti latinaksi: "Cuius rei demonstrationem mirabilem sane detexi hanc marginis exiguitas non caperet" (Olen keksinyt väittämälle ihmeellisen todistuksen, mutta marginaalissa ei riitä sille tilaa). Lause löytyi Fermat’n kuoltua vuonna 1665. Fermat’n oma kappale kirjasta on kuitenkin kadonnut.[2]
Tähän artikkeliin tai osioon ei ole merkitty lähteitä, joten tiedot kannattaa tarkistaa muista tietolähteistä. Voit auttaa Wikipediaa lisäämällä artikkeliin tarkistettavissa olevia lähteitä ja merkitsemällä ne ohjeen mukaan. |
Mahdollisesti Fermat tarkasteli potenssitaulukoita ns. nexus-lukujen eli perättäisten kokonaislukujen saman potenssin erotusten summana. Kun kokonaislukujen potenssit kirjoitetaan nexus-lukujen summana muotoon , on helppo huomata, että vain neliötaulukossa (n=2) nexus-lukujen ja niiden perättäissummien joukossa on neliöitä. Kuutiotaulukon (n=3) nexus-lukujen tai niiden perättäissummien joukossa ei koskaan ole kuutioita. Samoin kaikkien korkeampien potenssien taulukoissa nexus-lukujen ja nexus-summien joukossa ei koskaan esiinny kokonaislukujen vastaavia potensseja. Tämä on helppo osoittaa myös geometrisesti, koska kaikkien kokonaislukujen parillisten eksponenttien osoittamat potenssit ovat aina neliöitä ja parittomien eksponenttien osoittamat potenssit ovat aina neliöjonoja. Näiden sivut ovat myös samojen kantalukujen alempia potensseja, jotka voidaan kirjoittaa samoin edelläkuvattuun 1+nexussumman muotoon. Sen sijaan kahden kokonaisluvun saman potenssin erotuksesta tai summasta muodostetun ko. potenssia edustavan neliön tai neliöjonon sivujen pituutta tai pinta-alaa on mahdoton kirjoittaa minkään kokonaisluvun ko. potenssia edustavan 1+ nexussumman muotoon, koska ne jäävät aina kahden perättäisen kokonaisluvun ko. potenssin välille. Siten kahden kokonaisluvun saman potenssin erotus (eli etäisyys kyseisessä potenssitaulukossa) on aina nexus-luku tai perättäisten nexus-lukujen summa, joka ei voi olla minkään kokonaisluvun vastaava potenssi, jos n on kahta suurempi kokonaisluku. Tällainen havainto on "suuren lauseen" kanssa yhdenmukainen ja mahdollinen selitys sille, että "demonstraatio" ei mahtunut marginaaliin. Fermat ehkä perusti "demonstraationsa" ja "todistuksensa" kahden luvun summan symmetriaan: Summan muodostavat kaksi lukua ovat aina symmetrisesti summan puolikkaan molemmin puolin eli keskeltä taitetulla summajanalla samalla vaakaviivalla a--A--b. Tämä pitää paikkansa kokonaisluvuilla ja kokonaislukujen neliöillä, mutta ei enää kuutioilla ja korkeammilla potensseilla, joten nk. Pythagoraan lause voi toteutua kokonaisluvuilla, jos n=2, mutta ei, jos n=3 tai suurempi kokonaisluku, kuten Fermat nk. suuressa lauseessa kirjoittaa.
Lauseen tekee merkittäväksi se, että se oli viimeinen todeksi osoitettu Fermat’n luoma teoreema. Suurimmassa osassa lauseistaan Fermat oli kirjoittanut marginaaliin viitteitä oman todistuksensa kulkuun. Näiden viitteiden avulla myöhempi todistaminen helpottui huomattavasti, mutta Fermat’n suuren lauseen kanssa oli aloitettava alusta.
Fermat’n suurta lausetta oli yritetty todistaa moneen kertaan aikaisemminkin. Useaan kertaan tunnetutkin matemaatikot ovat väittäneet pystyvänsä sen todistamaan, mutta aina todistuksessa on ollut virhe. Vain muutama vuosi ennen Wilesin todistusta väitti japanilainen matemaatikko Yoichi Miyaoka todistaneensa lauseen, mutta todistuksesta löytyi lopulta virhe. Osia Fermat’n suuresta lauseesta oli kuitenkin pystytty todistamaan. Esimerkiksi Euler oli todistanut Fermat’n suuren lauseen, kun potenssi on tai .
Myöhemmin Fermat’n suuren lauseen ratkaisemisesta luvattiin palkkio, jota useat matemaatikot ja sitäkin useammat maallikot tavoittelivat. Ajatus siitä, että Fermat oli itse väittänyt 1600-luvun osaamisellaan pystyvänsä lauseen todistamaan, antoi myös maallikolle rohkaisun. Tuon ajan matemaattisen tiedon omaksuminen ei ole mahdoton tehtävä.
Todistus pääpiirteissään
muokkaaEnglantilainen Andrew Wiles todisti Fermat’n suuren lauseen vuonna 1995 työskenneltyään todistuksen parissa seitsemän vuotta. Toisin kuin Fermat kuuluisassa marginaalissaan kirjoitti, hän ei todennäköisesti ollut löytänyt virheetöntä todistusta: Wiles käytti todistuksessaan modernia matematiikkaa – erityisesti algebrallisessa geometriassa esiintyviä modulimuotoja ja elliptisiä käyriä – mikä oli 1600-luvun matemaatikkojen tavoittamattomissa.
Wilesin todistus teoreemalle perustui monilta osin muiden matemaatikkojen pohjustukseen. Todistuksen kulku on pääpiirteissään seuraava[3]: Fermat’n suuri lause on voimassa eksponenteilla ja . On riittävää osoittaa, että lause on voimassa alkulukueksponenteilla . On myös riittävää olettaa, että , ja on parillinen. Tarkastellaan elliptistä käyrää , jonka määrittelee yhtälö . Nyt on voimassa lause: Jos on puolivakaa elliptinen käyrä yli rationaalilukujen ja on :n konduktori, on modulimuoto ja tasoa . Tämän mukaan on modulimuoto. Mutta tällöin :n -torsiopisteiden muodostama ryhmä olisi tasoa kaksi oleva modulimuoto. Kuitenkaan ei ole olemassa nollasta poikkeavaa modulimuotoa, jonka taso on yksi tai kaksi.
Todistukseen siis käytettiin monia vasta 1900-luvulla kehitettyjä matematiikan menetelmiä, eivätkä useimmat matemaatikot ja tiedehistorioitsijat enää usko, että Fermat'lla olisi ollut pitävää todistusta lauseelle kaikilla eksponenteilla .
Todistuksen tarina on lähes yhtä erikoinen kuin itse lause. Wiles työskenteli seitsemän vuotta yksinomaan itse vihjaamatta edistyksestään kenellekään. Vasta loppuvaiheessa Nick Katz Princetonin yliopistosta auttoi Wilesiä. Kun hän julkisti todistuksensa pitämällä kolme luentoa Cambridgen yliopistossa 21.–23. kesäkuuta 1993, hän hämmästytti yleisöä lukuisilla uusilla ideoilla ja konstruktioilla. Luennon jälkeen matemaatikot tutkivat todistusta tarkemmin ja löysivätkin päättelyssä olleen aukon. Wiles ja Richard Taylor miettivät noin vuoden yrittäessään korjata todistusta. Syyskuussa 1994 he saivat lopulta aukon paikatuksi käyttämällä hyväkseen niin sanottua Iwasawan teoriaa.
Fermat’n suuren lauseen tapaus n = 2
muokkaaTätä artikkelia tai sen osaa on pyydetty parannettavaksi, koska se ei täytä Wikipedian laatuvaatimuksia. Voit auttaa Wikipediaa parantamalla artikkelia tai merkitsemällä ongelmat tarkemmin. Lisää tietoa saattaa olla keskustelusivulla. Tarkennus: Tämä pitäisi nimetä ja esittää jotenkin toisin, koska lause koskee nimenomaan tapauksia n>2. Tässähän mennään sen alueen ulkopuolelle ja osoitetaan että kun n=2 niin ratkaisuja löytyykin. |
Tässä osiossa esitetään matemaattinen todistus Fermat’n suurelle lauseelle tapauksessa Todistuksessa tarvitaan seuraavia matemaattisia käsitteitä: suurin yhteinen tekijä (syt), jaollisuus ja kongruenssi. Huomaa yhteys Pythagoraan lauseeseen.
Olkoon
ja
Tällöin yleinen ratkaisu yhtälölle
on
ja
missä ja ovat eri pariteettia olevia luonnollisia lukuja. Lisäksi ja . Edelleen jokaista tällaista paria vastaa tarkalleen yksi kolmikko , joka toteuttaa ehdot (1) ja (2).
Todistus: Oletetaan, että yhtälö (2) pätee ehdoilla (1). Edellä nähtiin, että on pariton, ja selvästi myös on pariton ja . Näin ollen ja ovat kokonaislukuja ja
.
Muutoin olisi olemassa siten, että ja , jolloin eli ja , ja seuraisi ristiriita.
Yhtälön (2) nojalla
ja molempien puolten alkulukuhajotelmia tarkastelemalla huomataan, että yhtälön oikeanpuoleisten tekijöiden on oltava neliöitä, koska niiden suurin yhteinen tekijä on 1. Täten
joillekin
joille ja
On myös voimassa kongruenssi
(mod 2)
mistä nähdään, että alkiot ja ovat eri pariteettia. Kongruenssin (mod 2) näkee todeksi sijoittamalla alkioiden ja tilalle luvut 0 ja 1 eri kombinaatioina. Täten kaikki yhtälön (2) ratkaisut, jotka toteuttavat ehdot (1), ovat muotoa
ja
missä ja ovat eri pariteettia ja toteuttavat ehdot
ja
Ratkaisu (6) nähdään todeksi yhtälöiden (4) ja (5) avulla.
Oletetaan toisaalta, että ja ovat eri pariteettia ja toteuttavat ehdot (7), ja että kaavat (3) ovat voimassa. Silloin
missä
ja
Edelleen, jos , niin
Vähentämällä ja summaamalla edelliset toisistaan saadaan ja . Koska , niin tai . Koska muuttuja on pariton, on luvun oltava . Näin ollen .
Täten jos ratkaisu tunnetaan, niin sitä vastaavat yksikäsitteiset ja , jotka saadaan yhtälöistä (5). Toisaalta jokaista ehdot (7) toteuttavaa eri pariteettista paria vastaa yksikäsitteinen yhtälön (2) ratkaisu , joka saadaan yhtälöistä (3). Tästä seuraa, että jokaista paria vastaa tarkalleen yksi kolmikko .
Lähteet
muokkaa- Aczel, Amir D.: Fermat'n teoreema. (Alkuteos: Fermat's Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem, 1996) Suomentanut Risto Varteva. Helsinki: Otava, 1997. ISBN 951-0-22202-X
- Hardy, G. H. & Wright, E. M.: An Introduction to the Theory of Numbers. Oxford: University Press, 1960. ISBN 978-0199219865
Viitteet
muokkaaKirjallisuutta
muokkaa- Singh, Simon: Fermat’n viimeinen teoreema: Kertomus ongelmasta, joka piinasi maailman parhaita matemaatikoita 358 vuoden ajan. ((Fermat’s enigma: The epic quest to solve the world's greatest mathematical problem, 1998.) Esipuhe: John Lynch) Suomentanut Katriina Savolainen. Helsinki: Tammi, 1998. ISBN 951-31-1118-0
- Wiles, Andrew (1995): Modular elliptic curves and Fermat's last theorem (Arkistoitu – Internet Archive), Annals of Mathematics (141) (3), 443–551.
Aiheesta muualla
muokkaa- Kuvia tai muita tiedostoja aiheesta Fermat’n suuri lause Wikimedia Commonsissa