Konjunktsioon

(Ümber suunatud leheküljelt Konjunktsioon (loogika))
 See artikkel räägib loogikatehtest, astronoomia mõiste kohta vaata artiklit Konjunktsioon (astronoomia), keeleteaduse mõiste kohta vaata artiklit sidesõna.

Konjunktsioon ehk loogiline korrutamine ehk "ning" on üks binaarne loogikatehe lauseloogikat sisaldavates sümbolloogika süsteemides.

tähistav Venni diagramm
tähistav Venni diagramm

Konjunktsioon ehk loogiline korrutamine on binaarne loogikatehe: lausete A ja B konjunktsioon AB loetakse tõeseks parajasti siis, kui laused A ja B on mõlemad tõesed ning vääraks kõigil muudel juhtudel.[1]

"A ja B" on tõene siis ja ainult siis, kui A on tõene ja B on tõene.

Seotud mõisted teistes valdkondades on järgmised:

Konjunktsiooni ja eituse abil on võimalik esitada kõik ülejäänud loogikatehted.[2]

Notatsioon

muuda

Konjunktsiooni tähistatakse tavaliselt infiks-operaatoriga:

  • matemaatikas ja loogikas kasutatakse sümbolit   või  või  
  • elektroonikas kasutatakse sümbolit  
  • programmeerimiskeeltes kasutatakse tähistust&, &&, või and
  • Jan Łukasiewiczi loogika prefiksnotatsioonis on vastav operaator K, mis tuleb poolakeelsest sõnast koniunkcja[3] (eesti keeles: konjunktsioon).

Definitsioon

muuda

Loogiline konjunktsioon on operatsioon kahel loogilisel väärtusel, enamasti kahel propositsioonil, mis väljastab väärtuse tõene siis ja ainult siis, kui mõlemad operandid on tõesed.

Tõeväärtustabel

muuda
 
Vasakul poolel olevate argumentide konjunktsioonid – Sierpinski kolmnurga tõesed bitid

Valemi  tõeväärtustabel:[4]

SISEND VÄLJUND
     
TÕENE TÕENE TÕENE
TÕENE VÄÄR VÄÄR
VÄÄR TÕENE VÄÄR
VÄÄR VÄÄR VÄÄR

Teiste operaatorite kaudu defineerimine

muuda

Süsteemides, kus lauseloogika konnektor pole primitiiv, võib konjunktsiooni defineerida järgmiselt:[5]

 

Omadused

muuda

Konjunktsioonil on järgnevad omadused:

kommutatiivsus: jah

             
             

assotsiatiivsus: jah

                     
                                 

distributiivsus: mitmete loogikatehetega jah, näiteks tehtega või, kuid mitte kõigiga

                     
                                 

idempotentsus: jah

                 
                 

monotoonsus: jah

                 
                             

tõesust säilitav: jah
Kui kõik sisendid on tõesed, on ka väljund tõene

             
             
(vajab testimist)

väärsust säilitav: jah
Kui kõik sisendid on väärad, on ka väljund väär.

             
             
(vajab testimist)

Walshi spekter: (1,-1,-1,1)

Mittelineaarsus: 1 (funktsioon on kõver)

Kasutades binaarseid väärtuseid tõese (1) ja väära (0) jaoks, siis töötab loogiline konjunktsioon täpselt nagu aritmeetiline korrutamine.

Rakendusi informaatikas

muuda
 
AND loogikavärav

Kõrgetasemelises programmeerimises ja digitaalses elektroonikas on konjunktsioon tavaliselt tähistatud infiks operaatoriga, enamasti tähisega nagu "AND", algebraline korrutamistehe või sümbol "&".

Loogilist konjunktsiooni kasutatakse tihti bitikaupa tehtavates operatsioonides, kus tähistab 0 väära ja 1 on tõene.

  • 0 AND 0  =  0,
  • 0 AND 1  =  0,
  • 1 AND 0  =  0,
  • 1 AND 1  =  1.

Seda operatsiooni saab rakendada ja kahele binaarsele sõnale, mida vaadeldakse võrdse pikkusega bitistringidena, leides iga samal positsioonil oleva bitipaari jaoks neile vastava AND väärtuse. Näiteks;

  • 11000110 AND 10100011  =  10000010.

Seda saab kasutada, et valida mingi osa bitistringist bitimaski kasutades. Näiteks 10011101 AND 00001000  =  00001000eraldab viienda biti 8-bitisest bitistringist.

Arvutivõrkude teaduses, kasutatakse bitimaske olemasoleva alamvõrgu võrguaadressi leidmisel nii, et ANDitakse IP aadress ja alamvõrgu mask.

Loogiline konjunktsioon "AND" on ka kasutusel SQL operatsioonides andmebaasi päringutel.

Vastavus hulgateoorias

muuda

Elemendi kuuluvus kahe hulga ühisosasse on hulgateoorias defineeritud loogilise konjunktsiooni abil: xAB siis ja ainult siis, kui (xA) ∧ (xB). Selle vastavuse tõttu jagab hulgateoreetiline ühisosa samuti mitmeid loogilise konjunktsiooni omadusi, nagu assotsiatiivsus, kommutatiivsus ja idempotentsus.

Loomulik keel

muuda

Nagu ka matemaatilise loogika teiste tehetega, on loogiline konjunktsioon ning seotud, kuid mitte täpselt võrdne, grammatilisele konjunktsioonile ning loomulikus keeles.

Eesti keele sõnal "ning" (või "ja") on omadused, mida loogiline konjunktsioon ei säilita. Näiteks tähistab "ning" vahel järjekorda. Lause "Nad abiellusid ning said lapse" tähendaks tavaarusaama järgi, et abiellumine toimus enne lapse saamist. Sõna "ning" ("ja") võib ka võib ka väljendada mingi asja osadeks tegemist, nagu lauses "Eesti lipp on sinine, must ja valge". See lause ei tähenda, et Eesti lipp on samaaegselt sinine, must ja valge, vaid seda, et lipu eri osadel on erinev värv.

Vaata ka

muuda

Viited

muuda
  1. 1,0 1,1 Enn Kasak. Loogika alused. Lk 261.
  2. Valdis Laan. "Diskreetne Matemaatika I. Kevad 2018. Loengukonspekt" (PDF). Teoreem 1.24.
  3. Józef Maria Bocheński (1959), A Précis of Mathematical Logic, translated by Otto Bird from the French and German editions, Dordrecht, North Holland: D. Reidel, passim.
  4. Tõnu Tamme, Tanel Tammet, Rein Prank. Loogika: Mõtlemisest tõestamiseni. Lk 69.{{raamatuviide}}: CS1 hooldus: mitu nime: autorite loend (link)
  5. Smith, Peter. "Types of proof system" (PDF). Lk 4.

Välislingid

muuda