Page:A short history of astronomy(1898).djvu/291

This page has been validated.
§§ 184—186]
Universal Gravitation
231

185. One group of results of an entirely novel character resulted from Newton's theory of gravitation. It became for the first time possible to estimate the masses of some of the celestial bodies, by comparing the attractions exerted by them on other bodies with that exerted by the earth.

The case of Jupiter may be given as an illustration. The time of revolution of Jupiter's outermost satellite is known to be about 16 days 16 hours, and its distance from, Jupiter was estimated by Newton (not very correctly) at about four times the distance of the moon from the earth. A calculation exactly like that of § 172 or § 173 shews that the acceleration of the satellite due to Jupiter's attraction is about ten times as great as the acceleration of the moon towards the earth, and that therefore, the distance being four times as great, Jupiter attracts a body with a force 10 × 4 × 4 times as great as that with which the earth attracts a body at the same distance; consequently Jupiter's mass is 160 times that of the earth. This process of reasoning applies also to Saturn, and in a very similar way a comparison of the motion of a planet, Venus for example, round the sun with the motion of the moon round the earth gives a relation between the masses of the sun and earth. In this way Newton found the mass of the sun to be 1067, 3021, and 169282 times greater than that of Jupiter, Saturn, and the earth, respectively. The corresponding figures now accepted are not far from 1047, 3530, 324439. The large error in the last number is due to the use of an erroneous value of the distance of the sun—then not at all accurately known—upon which depend the other distances in the solar system, except those connected with the earth-moon system. As it was necessary for the employment of this method to be able to observe the motion of some other body attracted by the planet in question, it could not be applied to the other three planets (Mars, Venus, and Mercury), of which no satellites were known.

186. From the equality of action and reaction it follows that, since the sun attracts the planets, they also attract the sun, and the sun consequently is in motion, though—owing to the comparative smallness of the planets—only to a very small extent. It follows that Kepler's Third Law is not strictly accurate, deviations from it becoming sensible in