Many of the definitions below are also used in the thermodynamics of chemical reactions .
General basic quantities
edit
Quantity (common name/s)
(Common) symbol/s
SI unit
Dimension
Number of molecules
N
1
1
Amount of substance
n
mol
N
Temperature
T
K
Θ
Heat Energy
Q , q
J
ML2 T−2
Latent heat
QL
J
ML2 T−2
General derived quantities
edit
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI unit
Dimension
Thermodynamic beta , inverse temperature
β
β
=
1
/
k
B
T
{\displaystyle \beta =1/k_{\text{B}}T}
J−1
T2 M−1 L−2
Thermodynamic temperature
τ
τ
=
k
B
T
{\displaystyle \tau =k_{\text{B}}T}
τ
=
k
B
(
∂
U
/
∂
S
)
N
{\displaystyle \tau =k_{\text{B}}\left(\partial U/\partial S\right)_{N}}
1
/
τ
=
1
/
k
B
(
∂
S
/
∂
U
)
N
{\displaystyle 1/\tau =1/k_{\text{B}}\left(\partial S/\partial U\right)_{N}}
J
ML2 T−2
Entropy
S
S
=
−
k
B
∑
i
p
i
ln
p
i
{\displaystyle S=-k_{\text{B}}\sum _{i}p_{i}\ln p_{i}}
S
=
−
(
∂
F
/
∂
T
)
V
,
N
{\displaystyle S=-\left(\partial F/\partial T\right)_{V,N}}
,
S
=
−
(
∂
G
/
∂
T
)
P
,
N
{\displaystyle S=-\left(\partial G/\partial T\right)_{P,N}}
J⋅K−1
ML2 T−2 Θ−1
Pressure
P
P
=
−
(
∂
F
/
∂
V
)
T
,
N
{\displaystyle P=-\left(\partial F/\partial V\right)_{T,N}}
P
=
−
(
∂
U
/
∂
V
)
S
,
N
{\displaystyle P=-\left(\partial U/\partial V\right)_{S,N}}
Pa
ML−1 T−2
Internal Energy
U
U
=
∑
i
E
i
{\displaystyle U=\sum _{i}E_{i}}
J
ML2 T−2
Enthalpy
H
H
=
U
+
p
V
{\displaystyle H=U+pV}
J
ML2 T−2
Partition Function
Z
1
1
Gibbs free energy
G
G
=
H
−
T
S
{\displaystyle G=H-TS}
J
ML2 T−2
Chemical potential (of component i in a mixture)
μi
μ
i
=
(
∂
U
/
∂
N
i
)
N
j
≠
i
,
S
,
V
{\displaystyle \mu _{i}=\left(\partial U/\partial N_{i}\right)_{N_{j\neq i},S,V}}
μ
i
=
(
∂
F
/
∂
N
i
)
T
,
V
{\displaystyle \mu _{i}=\left(\partial F/\partial N_{i}\right)_{T,V}}
, where
F
{\displaystyle F}
is not proportional to
N
{\displaystyle N}
because
μ
i
{\displaystyle \mu _{i}}
depends on pressure.
μ
i
=
(
∂
G
/
∂
N
i
)
T
,
P
{\displaystyle \mu _{i}=\left(\partial G/\partial N_{i}\right)_{T,P}}
, where
G
{\displaystyle G}
is proportional to
N
{\displaystyle N}
(as long as the molar ratio composition of the system remains the same) because
μ
i
{\displaystyle \mu _{i}}
depends only on temperature and pressure and composition.
μ
i
/
τ
=
−
1
/
k
B
(
∂
S
/
∂
N
i
)
U
,
V
{\displaystyle \mu _{i}/\tau =-1/k_{\text{B}}\left(\partial S/\partial N_{i}\right)_{U,V}}
J
ML2 T−2
Helmholtz free energy
A , F
F
=
U
−
T
S
{\displaystyle F=U-TS}
J
ML2 T−2
Landau potential , Landau free energy, Grand potential
Ω , ΦG
Ω
=
U
−
T
S
−
μ
N
{\displaystyle \Omega =U-TS-\mu N\ }
J
ML2 T−2
Massieu potential, Helmholtz free entropy
Φ
Φ
=
S
−
U
/
T
{\displaystyle \Phi =S-U/T}
J⋅K−1
ML2 T−2 Θ−1
Planck potential, Gibbs free entropy
Ξ
Ξ
=
Φ
−
p
V
/
T
{\displaystyle \Xi =\Phi -pV/T}
J⋅K−1
ML2 T−2 Θ−1
Thermal properties of matter
edit
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI unit
Dimension
General heat/thermal capacity
C
C
=
∂
Q
/
∂
T
{\displaystyle C=\partial Q/\partial T}
J⋅K−1
ML2 T−2 Θ−1
Heat capacity (isobaric)
Cp
C
p
=
∂
H
/
∂
T
{\displaystyle C_{p}=\partial H/\partial T}
J⋅K−1
ML2 T−2 Θ−1
Specific heat capacity (isobaric)
Cmp
C
m
p
=
∂
2
Q
/
∂
m
∂
T
{\displaystyle C_{mp}=\partial ^{2}Q/\partial m\partial T}
J⋅kg−1 ⋅K−1
L2 T−2 Θ−1
Molar specific heat capacity (isobaric)
Cnp
C
n
p
=
∂
2
Q
/
∂
n
∂
T
{\displaystyle C_{np}=\partial ^{2}Q/\partial n\partial T}
J⋅K−1 ⋅mol−1
ML2 T−2 Θ−1 N−1
Heat capacity (isochoric/volumetric)
CV
C
V
=
∂
U
/
∂
T
{\displaystyle C_{V}=\partial U/\partial T}
J⋅K−1
ML2 T−2 Θ−1
Specific heat capacity (isochoric)
CmV
C
m
V
=
∂
2
Q
/
∂
m
∂
T
{\displaystyle C_{mV}=\partial ^{2}Q/\partial m\partial T}
J⋅kg−1 ⋅K−1
L2 T−2 Θ−1
Molar specific heat capacity (isochoric)
CnV
C
n
V
=
∂
2
Q
/
∂
n
∂
T
{\displaystyle C_{nV}=\partial ^{2}Q/\partial n\partial T}
J⋅K⋅−1 mol−1
ML2 T−2 Θ−1 N−1
Specific latent heat
L
L
=
∂
Q
/
∂
m
{\displaystyle L=\partial Q/\partial m}
J⋅kg−1
L2 T−2
Ratio of isobaric to isochoric heat capacity, heat capacity ratio , adiabatic index, Laplace coefficient
γ
γ
=
C
p
/
C
V
=
c
p
/
c
V
=
C
m
p
/
C
m
V
{\displaystyle \gamma =C_{p}/C_{V}=c_{p}/c_{V}=C_{mp}/C_{mV}}
1
1
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI unit
Dimension
Temperature gradient
No standard symbol
∇
T
{\displaystyle \nabla T}
K⋅m−1
ΘL−1
Thermal conduction rate, thermal current, thermal/heat flux , thermal power transfer
P
P
=
d
Q
/
d
t
{\displaystyle P=\mathrm {d} Q/\mathrm {d} t}
W
ML2 T−3
Thermal intensity
I
I
=
d
P
/
d
A
{\displaystyle I=\mathrm {d} P/\mathrm {d} A}
W⋅m−2
MT−3
Thermal/heat flux density (vector analogue of thermal intensity above)
q
Q
=
∬
q
⋅
d
S
d
t
{\displaystyle Q=\iint \mathbf {q} \cdot \mathrm {d} \mathbf {S} \mathrm {d} t}
W⋅m−2
MT−3
The equations in this article are classified by subject.
Thermodynamic processes
edit
Physical situation
Equations
Isentropic process (adiabatic and reversible)
Q
=
0
,
Δ
U
=
−
W
{\displaystyle Q=0,\quad \Delta U=-W}
For an ideal gas
p
1
V
1
γ
=
p
2
V
2
γ
{\displaystyle p_{1}V_{1}^{\gamma }=p_{2}V_{2}^{\gamma }}
T
1
V
1
γ
−
1
=
T
2
V
2
γ
−
1
{\displaystyle T_{1}V_{1}^{\gamma -1}=T_{2}V_{2}^{\gamma -1}}
p
1
1
−
γ
T
1
γ
=
p
2
1
−
γ
T
2
γ
{\displaystyle p_{1}^{1-\gamma }T_{1}^{\gamma }=p_{2}^{1-\gamma }T_{2}^{\gamma }}
Isothermal process
Δ
U
=
0
,
W
=
Q
{\displaystyle \Delta U=0,\quad W=Q}
For an ideal gas
W
=
k
T
N
ln
(
V
2
/
V
1
)
{\displaystyle W=kTN\ln(V_{2}/V_{1})}
W
=
n
R
T
ln
(
V
2
/
V
1
)
{\displaystyle W=nRT\ln(V_{2}/V_{1})}
Isobaric process
p 1 = p 2 , p = constant
W
=
p
Δ
V
,
Q
=
Δ
U
+
p
δ
V
{\displaystyle W=p\Delta V,\quad Q=\Delta U+p\delta V}
Isochoric process
V 1 = V 2 , V = constant
W
=
0
,
Q
=
Δ
U
{\displaystyle W=0,\quad Q=\Delta U}
Free expansion
Δ
U
=
0
{\displaystyle \Delta U=0}
Work done by an expanding gas
Process
W
=
∫
V
1
V
2
p
d
V
{\displaystyle W=\int _{V_{1}}^{V_{2}}p\mathrm {d} V}
Net work done in cyclic processes
W
=
∮
c
y
c
l
e
p
d
V
=
∮
c
y
c
l
e
Δ
Q
{\displaystyle W=\oint _{\mathrm {cycle} }p\mathrm {d} V=\oint _{\mathrm {cycle} }\Delta Q}
Ideal gas equations
Physical situation
Nomenclature
Equations
Ideal gas law
p
V
=
n
R
T
=
k
T
N
{\displaystyle pV=nRT=kTN}
p
1
V
1
p
2
V
2
=
n
1
T
1
n
2
T
2
=
N
1
T
1
N
2
T
2
{\displaystyle {\frac {p_{1}V_{1}}{p_{2}V_{2}}}={\frac {n_{1}T_{1}}{n_{2}T_{2}}}={\frac {N_{1}T_{1}}{N_{2}T_{2}}}}
Pressure of an ideal gas
m = mass of one molecule
Mm = molar mass
p
=
N
m
⟨
v
2
⟩
3
V
=
n
M
m
⟨
v
2
⟩
3
V
=
1
3
ρ
⟨
v
2
⟩
{\displaystyle p={\frac {Nm\langle v^{2}\rangle }{3V}}={\frac {nM_{m}\langle v^{2}\rangle }{3V}}={\frac {1}{3}}\rho \langle v^{2}\rangle }
Quantity
General Equation
Isobaric Δp = 0
Isochoric ΔV = 0
Isothermal ΔT = 0
Adiabatic
Q
=
0
{\displaystyle Q=0}
Work W
δ
W
=
−
p
d
V
{\displaystyle \delta W=-pdV\;}
−
p
Δ
V
{\displaystyle -p\Delta V\;}
0
{\displaystyle 0\;}
−
n
R
T
ln
V
2
V
1
{\displaystyle -nRT\ln {\frac {V_{2}}{V_{1}}}\;}
−
n
R
T
ln
P
1
P
2
{\displaystyle -nRT\ln {\frac {P_{1}}{P_{2}}}\;}
P
V
γ
(
V
f
1
−
γ
−
V
i
1
−
γ
)
1
−
γ
=
C
V
(
T
2
−
T
1
)
{\displaystyle {\frac {PV^{\gamma }(V_{f}^{1-\gamma }-V_{i}^{1-\gamma })}{1-\gamma }}=C_{V}\left(T_{2}-T_{1}\right)}
Heat Capacity C
(as for real gas)
C
p
=
5
2
n
R
{\displaystyle C_{p}={\frac {5}{2}}nR}
(for monatomic ideal gas)
C
p
=
7
2
n
R
{\displaystyle C_{p}={\frac {7}{2}}nR}
(for diatomic ideal gas)
C
V
=
3
2
n
R
{\displaystyle C_{V}={\frac {3}{2}}nR}
(for monatomic ideal gas)
C
V
=
5
2
n
R
{\displaystyle C_{V}={\frac {5}{2}}nR\;}
(for diatomic ideal gas)
Internal Energy ΔU
Δ
U
=
C
V
Δ
T
{\displaystyle \Delta U=C_{V}\Delta T\;}
Q
+
W
{\displaystyle Q+W\;}
Q
p
−
p
Δ
V
{\displaystyle Q_{p}-p\Delta V}
Q
{\displaystyle Q\;}
C
V
(
T
2
−
T
1
)
{\displaystyle C_{V}\left(T_{2}-T_{1}\right)}
0
{\displaystyle 0\;}
Q
=
−
W
{\displaystyle Q=-W}
W
{\displaystyle W\;}
C
V
(
T
2
−
T
1
)
{\displaystyle C_{V}\left(T_{2}-T_{1}\right)}
Enthalpy ΔH
H
=
U
+
p
V
{\displaystyle H=U+pV\;}
C
p
(
T
2
−
T
1
)
{\displaystyle C_{p}\left(T_{2}-T_{1}\right)\;}
Q
V
+
V
Δ
p
{\displaystyle Q_{V}+V\Delta p\;}
0
{\displaystyle 0\;}
C
p
(
T
2
−
T
1
)
{\displaystyle C_{p}\left(T_{2}-T_{1}\right)\;}
Entropy Δs
Δ
S
=
C
V
ln
T
2
T
1
+
n
R
ln
V
2
V
1
{\displaystyle \Delta S=C_{V}\ln {T_{2} \over T_{1}}+nR\ln {V_{2} \over V_{1}}}
Δ
S
=
C
p
ln
T
2
T
1
−
n
R
ln
p
2
p
1
{\displaystyle \Delta S=C_{p}\ln {T_{2} \over T_{1}}-nR\ln {p_{2} \over p_{1}}}
[ 1]
C
p
ln
T
2
T
1
{\displaystyle C_{p}\ln {\frac {T_{2}}{T_{1}}}\;}
C
V
ln
T
2
T
1
{\displaystyle C_{V}\ln {\frac {T_{2}}{T_{1}}}\;}
n
R
ln
V
2
V
1
{\displaystyle nR\ln {\frac {V_{2}}{V_{1}}}\;}
Q
T
{\displaystyle {\frac {Q}{T}}\;}
C
p
ln
V
2
V
1
+
C
V
ln
p
2
p
1
=
0
{\displaystyle C_{p}\ln {\frac {V_{2}}{V_{1}}}+C_{V}\ln {\frac {p_{2}}{p_{1}}}=0\;}
Constant
{\displaystyle \;}
V
T
{\displaystyle {\frac {V}{T}}\;}
p
T
{\displaystyle {\frac {p}{T}}\;}
p
V
{\displaystyle pV\;}
p
V
γ
{\displaystyle pV^{\gamma }\;}
S
=
k
B
ln
Ω
{\displaystyle S=k_{\mathrm {B} }\ln \Omega }
, where k B is the Boltzmann constant , and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.
d
S
=
δ
Q
T
{\displaystyle dS={\frac {\delta Q}{T}}}
, for reversible processes only
Below are useful results from the Maxwell–Boltzmann distribution for an ideal gas, and the implications of the Entropy quantity. The distribution is valid for atoms or molecules constituting ideal gases.
Physical situation
Nomenclature
Equations
Maxwell–Boltzmann distribution
v = velocity of atom/molecule,
m = mass of each molecule (all molecules are identical in kinetic theory),
γ (p ) = Lorentz factor as function of momentum (see below)
Ratio of thermal to rest mass-energy of each molecule:
θ
=
k
B
T
/
m
c
2
{\displaystyle \theta =k_{\text{B}}T/mc^{2}}
K 2 is the modified Bessel function of the second kind.
Non-relativistic speeds
P
(
v
)
=
4
π
(
m
2
π
k
B
T
)
3
/
2
v
2
e
−
m
v
2
/
2
k
B
T
{\displaystyle P\left(v\right)=4\pi \left({\frac {m}{2\pi k_{\text{B}}T}}\right)^{3/2}v^{2}e^{-mv^{2}/2k_{\text{B}}T}}
Relativistic speeds (Maxwell–Jüttner distribution)
f
(
p
)
=
1
4
π
m
3
c
3
θ
K
2
(
1
/
θ
)
e
−
γ
(
p
)
/
θ
{\displaystyle f(p)={\frac {1}{4\pi m^{3}c^{3}\theta K_{2}(1/\theta )}}e^{-\gamma (p)/\theta }}
Entropy Logarithm of the density of states
Pi = probability of system in microstate i
Ω = total number of microstates
S
=
−
k
B
∑
i
P
i
ln
P
i
=
k
B
ln
Ω
{\displaystyle S=-k_{\text{B}}\sum _{i}P_{i}\ln P_{i}=k_{\mathrm {B} }\ln \Omega }
where:
P
i
=
1
/
Ω
{\displaystyle P_{i}=1/\Omega }
Entropy change
Δ
S
=
∫
Q
1
Q
2
d
Q
T
{\displaystyle \Delta S=\int _{Q_{1}}^{Q_{2}}{\frac {\mathrm {d} Q}{T}}}
Δ
S
=
k
B
N
ln
V
2
V
1
+
N
C
V
ln
T
2
T
1
{\displaystyle \Delta S=k_{\text{B}}N\ln {\frac {V_{2}}{V_{1}}}+NC_{V}\ln {\frac {T_{2}}{T_{1}}}}
Entropic force
F
S
=
−
T
∇
S
{\displaystyle \mathbf {F} _{\mathrm {S} }=-T\nabla S}
Equipartition theorem
d f = degree of freedom
Average kinetic energy per degree of freedom
⟨
E
k
⟩
=
1
2
k
T
{\displaystyle \langle E_{\mathrm {k} }\rangle ={\frac {1}{2}}kT}
Internal energy
U
=
d
f
⟨
E
k
⟩
=
d
f
2
k
T
{\displaystyle U=d_{\text{f}}\langle E_{\mathrm {k} }\rangle ={\frac {d_{\text{f}}}{2}}kT}
Corollaries of the non-relativistic Maxwell–Boltzmann distribution are below.
Physical situation
Nomenclature
Equations
Mean speed
⟨
v
⟩
=
8
k
B
T
π
m
{\displaystyle \langle v\rangle ={\sqrt {\frac {8k_{\text{B}}T}{\pi m}}}}
Root mean square speed
v
r
m
s
=
⟨
v
2
⟩
=
3
k
B
T
m
{\displaystyle v_{\mathrm {rms} }={\sqrt {\langle v^{2}\rangle }}={\sqrt {\frac {3k_{\text{B}}T}{m}}}}
Modal speed
v
m
o
d
e
=
2
k
B
T
m
{\displaystyle v_{\mathrm {mode} }={\sqrt {\frac {2k_{\text{B}}T}{m}}}}
Mean free path
σ = effective cross-section
n = volume density of number of target particles
ℓ = mean free path
ℓ
=
1
/
2
n
σ
{\displaystyle \ell =1/{\sqrt {2}}n\sigma }
Quasi-static and reversible processes
edit
For quasi-static and reversible processes, the first law of thermodynamics is:
d
U
=
δ
Q
−
δ
W
{\displaystyle dU=\delta Q-\delta W}
where δQ is the heat supplied to the system and δW is the work done by the system.
Thermodynamic potentials
edit
The following energies are called the thermodynamic potentials ,
Name
Symbol
Formula
Natural variables
Internal energy
U
{\displaystyle U}
∫
(
T
d
S
−
p
d
V
+
∑
i
μ
i
d
N
i
)
{\displaystyle \int \left(T\,\mathrm {d} S-p\,\mathrm {d} V+\sum _{i}\mu _{i}\mathrm {d} N_{i}\right)}
S
,
V
,
{
N
i
}
{\displaystyle S,V,\{N_{i}\}}
Helmholtz free energy
A
{\displaystyle A}
U
−
T
S
{\displaystyle U-TS}
T
,
V
,
{
N
i
}
{\displaystyle T,V,\{N_{i}\}}
Enthalpy
H
{\displaystyle H}
U
+
p
V
{\displaystyle U+pV}
S
,
p
,
{
N
i
}
{\displaystyle S,p,\{N_{i}\}}
Gibbs free energy
G
{\displaystyle G}
U
+
p
V
−
T
S
{\displaystyle U+pV-TS}
T
,
p
,
{
N
i
}
{\displaystyle T,p,\{N_{i}\}}
Landau potential, or grand potential
Ω
{\displaystyle \Omega }
,
Φ
G
{\displaystyle \Phi _{\text{G}}}
U
−
T
S
−
{\displaystyle U-TS-}
∑
i
{\displaystyle \sum _{i}\,}
μ
i
N
i
{\displaystyle \mu _{i}N_{i}}
T
,
V
,
{
μ
i
}
{\displaystyle T,V,\{\mu _{i}\}}
and the corresponding fundamental thermodynamic relations or "master equations"[ 2] are:
Potential
Differential
Internal energy
d
U
(
S
,
V
,
N
i
)
=
T
d
S
−
p
d
V
+
∑
i
μ
i
d
N
i
{\displaystyle dU\left(S,V,{N_{i}}\right)=TdS-pdV+\sum _{i}\mu _{i}dN_{i}}
Enthalpy
d
H
(
S
,
p
,
N
i
)
=
T
d
S
+
V
d
p
+
∑
i
μ
i
d
N
i
{\displaystyle dH\left(S,p,{N_{i}}\right)=TdS+Vdp+\sum _{i}\mu _{i}dN_{i}}
Helmholtz free energy
d
F
(
T
,
V
,
N
i
)
=
−
S
d
T
−
p
d
V
+
∑
i
μ
i
d
N
i
{\displaystyle dF\left(T,V,{N_{i}}\right)=-SdT-pdV+\sum _{i}\mu _{i}dN_{i}}
Gibbs free energy
d
G
(
T
,
p
,
N
i
)
=
−
S
d
T
+
V
d
p
+
∑
i
μ
i
d
N
i
{\displaystyle dG\left(T,p,{N_{i}}\right)=-SdT+Vdp+\sum _{i}\mu _{i}dN_{i}}
The four most common Maxwell's relations are:
Physical situation
Nomenclature
Equations
Thermodynamic potentials as functions of their natural variables
U
(
S
,
V
)
{\displaystyle U(S,V)\,}
= Internal energy
H
(
S
,
P
)
{\displaystyle H(S,P)\,}
= Enthalpy
F
(
T
,
V
)
{\displaystyle F(T,V)\,}
= Helmholtz free energy
G
(
T
,
P
)
{\displaystyle G(T,P)\,}
= Gibbs free energy
(
∂
T
∂
V
)
S
=
−
(
∂
P
∂
S
)
V
=
∂
2
U
∂
S
∂
V
{\displaystyle \left({\frac {\partial T}{\partial V}}\right)_{S}=-\left({\frac {\partial P}{\partial S}}\right)_{V}={\frac {\partial ^{2}U}{\partial S\partial V}}}
(
∂
T
∂
P
)
S
=
+
(
∂
V
∂
S
)
P
=
∂
2
H
∂
S
∂
P
{\displaystyle \left({\frac {\partial T}{\partial P}}\right)_{S}=+\left({\frac {\partial V}{\partial S}}\right)_{P}={\frac {\partial ^{2}H}{\partial S\partial P}}}
+
(
∂
S
∂
V
)
T
=
(
∂
P
∂
T
)
V
=
−
∂
2
F
∂
T
∂
V
{\displaystyle +\left({\frac {\partial S}{\partial V}}\right)_{T}=\left({\frac {\partial P}{\partial T}}\right)_{V}=-{\frac {\partial ^{2}F}{\partial T\partial V}}}
−
(
∂
S
∂
P
)
T
=
(
∂
V
∂
T
)
P
=
∂
2
G
∂
T
∂
P
{\displaystyle -\left({\frac {\partial S}{\partial P}}\right)_{T}=\left({\frac {\partial V}{\partial T}}\right)_{P}={\frac {\partial ^{2}G}{\partial T\partial P}}}
More relations include the following.
(
∂
S
∂
U
)
V
,
N
=
1
T
{\displaystyle \left({\partial S \over \partial U}\right)_{V,N}={1 \over T}}
(
∂
S
∂
V
)
N
,
U
=
p
T
{\displaystyle \left({\partial S \over \partial V}\right)_{N,U}={p \over T}}
(
∂
S
∂
N
)
V
,
U
=
−
μ
T
{\displaystyle \left({\partial S \over \partial N}\right)_{V,U}=-{\mu \over T}}
(
∂
T
∂
S
)
V
=
T
C
V
{\displaystyle \left({\partial T \over \partial S}\right)_{V}={T \over C_{V}}}
(
∂
T
∂
S
)
P
=
T
C
P
{\displaystyle \left({\partial T \over \partial S}\right)_{P}={T \over C_{P}}}
−
(
∂
p
∂
V
)
T
=
1
V
K
T
{\displaystyle -\left({\partial p \over \partial V}\right)_{T}={1 \over {VK_{T}}}}
Other differential equations are:
Name
H
U
G
Gibbs–Helmholtz equation
H
=
−
T
2
(
∂
(
G
/
T
)
∂
T
)
p
{\displaystyle H=-T^{2}\left({\frac {\partial \left(G/T\right)}{\partial T}}\right)_{p}}
U
=
−
T
2
(
∂
(
F
/
T
)
∂
T
)
V
{\displaystyle U=-T^{2}\left({\frac {\partial \left(F/T\right)}{\partial T}}\right)_{V}}
G
=
−
V
2
(
∂
(
F
/
V
)
∂
V
)
T
{\displaystyle G=-V^{2}\left({\frac {\partial \left(F/V\right)}{\partial V}}\right)_{T}}
(
∂
H
∂
p
)
T
=
V
−
T
(
∂
V
∂
T
)
P
{\displaystyle \left({\frac {\partial H}{\partial p}}\right)_{T}=V-T\left({\frac {\partial V}{\partial T}}\right)_{P}}
(
∂
U
∂
V
)
T
=
T
(
∂
P
∂
T
)
V
−
P
{\displaystyle \left({\frac {\partial U}{\partial V}}\right)_{T}=T\left({\frac {\partial P}{\partial T}}\right)_{V}-P}
U
=
N
k
B
T
2
(
∂
ln
Z
∂
T
)
V
{\displaystyle U=Nk_{\text{B}}T^{2}\left({\frac {\partial \ln Z}{\partial T}}\right)_{V}}
S
=
U
T
+
N
k
B
ln
Z
−
N
k
ln
N
+
N
k
{\displaystyle S={\frac {U}{T}}+Nk_{\text{B}}\ln Z-Nk\ln N+Nk}
Indistinguishable Particles
where N is number of particles, h is that Planck constant , I is moment of inertia , and Z is the partition function , in various forms:
Degree of freedom
Partition function
Translation
Z
t
=
(
2
π
m
k
B
T
)
3
2
V
h
3
{\displaystyle Z_{t}={\frac {(2\pi mk_{\text{B}}T)^{\frac {3}{2}}V}{h^{3}}}}
Vibration
Z
v
=
1
1
−
e
−
h
ω
2
π
k
B
T
{\displaystyle Z_{v}={\frac {1}{1-e^{\frac {-h\omega }{2\pi k_{\text{B}}T}}}}}
Rotation
Z
r
=
2
I
k
B
T
σ
(
h
2
π
)
2
{\displaystyle Z_{r}={\frac {2Ik_{\text{B}}T}{\sigma ({\frac {h}{2\pi }})^{2}}}}
Thermal properties of matter
edit
Coefficients
Equation
Joule-Thomson coefficient
μ
J
T
=
(
∂
T
∂
p
)
H
{\displaystyle \mu _{JT}=\left({\frac {\partial T}{\partial p}}\right)_{H}}
Compressibility (constant temperature)
K
T
=
−
1
V
(
∂
V
∂
p
)
T
,
N
{\displaystyle K_{T}=-{1 \over V}\left({\partial V \over \partial p}\right)_{T,N}}
Coefficient of thermal expansion (constant pressure)
α
p
=
1
V
(
∂
V
∂
T
)
p
{\displaystyle \alpha _{p}={\frac {1}{V}}\left({\frac {\partial V}{\partial T}}\right)_{p}}
Heat capacity (constant pressure)
C
p
=
(
∂
Q
r
e
v
∂
T
)
p
=
(
∂
U
∂
T
)
p
+
p
(
∂
V
∂
T
)
p
=
(
∂
H
∂
T
)
p
=
T
(
∂
S
∂
T
)
p
{\displaystyle C_{p}=\left({\partial Q_{rev} \over \partial T}\right)_{p}=\left({\partial U \over \partial T}\right)_{p}+p\left({\partial V \over \partial T}\right)_{p}=\left({\partial H \over \partial T}\right)_{p}=T\left({\partial S \over \partial T}\right)_{p}}
Heat capacity (constant volume)
C
V
=
(
∂
Q
r
e
v
∂
T
)
V
=
(
∂
U
∂
T
)
V
=
T
(
∂
S
∂
T
)
V
{\displaystyle C_{V}=\left({\partial Q_{rev} \over \partial T}\right)_{V}=\left({\partial U \over \partial T}\right)_{V}=T\left({\partial S \over \partial T}\right)_{V}}
Derivation of heat capacity (constant pressure)
Since
(
∂
T
∂
p
)
H
(
∂
p
∂
H
)
T
(
∂
H
∂
T
)
p
=
−
1
{\displaystyle \left({\frac {\partial T}{\partial p}}\right)_{H}\left({\frac {\partial p}{\partial H}}\right)_{T}\left({\frac {\partial H}{\partial T}}\right)_{p}=-1}
(
∂
T
∂
p
)
H
=
−
(
∂
H
∂
p
)
T
(
∂
T
∂
H
)
p
=
−
1
(
∂
H
∂
T
)
p
(
∂
H
∂
p
)
T
{\displaystyle {\begin{aligned}\left({\frac {\partial T}{\partial p}}\right)_{H}&=-\left({\frac {\partial H}{\partial p}}\right)_{T}\left({\frac {\partial T}{\partial H}}\right)_{p}\\&={\frac {-1}{\left({\frac {\partial H}{\partial T}}\right)_{p}}}\left({\frac {\partial H}{\partial p}}\right)_{T}\end{aligned}}}
C
p
=
(
∂
H
∂
T
)
p
{\displaystyle C_{p}=\left({\frac {\partial H}{\partial T}}\right)_{p}}
⇒
(
∂
T
∂
p
)
H
=
−
1
C
p
(
∂
H
∂
p
)
T
{\displaystyle \Rightarrow \left({\frac {\partial T}{\partial p}}\right)_{H}=-{\frac {1}{C_{p}}}\left({\frac {\partial H}{\partial p}}\right)_{T}}
Derivation of heat capacity (constant volume)
Since
d
U
=
δ
Q
r
e
v
−
δ
W
r
e
v
,
{\displaystyle dU=\delta Q_{rev}-\delta W_{rev},}
(where δW rev is the work done by the system),
δ
S
=
δ
Q
r
e
v
T
,
δ
W
r
e
v
=
p
δ
V
{\displaystyle \delta S={\frac {\delta Q_{rev}}{T}},\delta W_{rev}=p\delta V}
d
U
=
T
δ
S
−
p
δ
V
{\displaystyle dU=T\delta S-p\delta V}
(
∂
U
∂
T
)
V
=
T
(
∂
S
∂
T
)
V
−
p
(
∂
V
∂
T
)
V
;
C
V
=
(
∂
U
∂
T
)
V
{\displaystyle \left({\frac {\partial U}{\partial T}}\right)_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}-p\left({\frac {\partial V}{\partial T}}\right)_{V};C_{V}=\left({\frac {\partial U}{\partial T}}\right)_{V}}
⇒
C
V
=
T
(
∂
S
∂
T
)
V
{\displaystyle \Rightarrow C_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}}
Physical situation
Nomenclature
Equations
Net intensity emission/absorption
T external = external temperature (outside of system)
T system = internal temperature (inside system)
ε = emissivity
I
=
σ
ϵ
(
T
e
x
t
e
r
n
a
l
4
−
T
s
y
s
t
e
m
4
)
{\displaystyle I=\sigma \epsilon \left(T_{\mathrm {external} }^{4}-T_{\mathrm {system} }^{4}\right)}
Internal energy of a substance
CV = isovolumetric heat capacity of substance
ΔT = temperature change of substance
Δ
U
=
N
C
V
Δ
T
{\displaystyle \Delta U=NC_{V}\Delta T}
Meyer's equation
Cp = isobaric heat capacity
CV = isovolumetric heat capacity
n = amount of substance
C
p
−
C
V
=
n
R
{\displaystyle C_{p}-C_{V}=nR}
Effective thermal conductivities
λi = thermal conductivity of substance i
λ net = equivalent thermal conductivity
Series
λ
n
e
t
=
∑
j
λ
j
{\displaystyle \lambda _{\mathrm {net} }=\sum _{j}\lambda _{j}}
Parallel
1
λ
n
e
t
=
∑
j
(
1
λ
j
)
{\displaystyle {\frac {1}{\lambda }}_{\mathrm {net} }=\sum _{j}\left({\frac {1}{\lambda }}_{j}\right)}
Thermal efficiencies
edit
Physical situation
Nomenclature
Equations
Thermodynamic engines
η = efficiency
W = work done by engine
Q H = heat energy in higher temperature reservoir
Q L = heat energy in lower temperature reservoir
T H = temperature of higher temp. reservoir
T L = temperature of lower temp. reservoir
Thermodynamic engine:
η
=
|
W
Q
H
|
{\displaystyle \eta =\left|{\frac {W}{Q_{\text{H}}}}\right|}
Carnot engine efficiency:
η
c
=
1
−
|
Q
L
Q
H
|
=
1
−
T
L
T
H
{\displaystyle \eta _{\text{c}}=1-\left|{\frac {Q_{\text{L}}}{Q_{\text{H}}}}\right|=1-{\frac {T_{\text{L}}}{T_{\text{H}}}}}
Refrigeration
K = coefficient of refrigeration performance
Refrigeration performance
K
=
|
Q
L
W
|
{\displaystyle K=\left|{\frac {Q_{\text{L}}}{W}}\right|}
Carnot refrigeration performance
K
C
=
|
Q
L
|
|
Q
H
|
−
|
Q
L
|
=
T
L
T
H
−
T
L
{\displaystyle K_{\text{C}}={\frac {|Q_{\text{L}}|}{|Q_{\text{H}}|-|Q_{\text{L}}|}}={\frac {T_{\text{L}}}{T_{\text{H}}-T_{\text{L}}}}}
^ Keenan, Thermodynamics , Wiley, New York, 1947
^ Physical chemistry, P.W. Atkins, Oxford University Press, 1978, ISBN 0 19 855148 7
Atkins, Peter and de Paula, Julio Physical Chemistry , 7th edition, W.H. Freeman and Company, 2002 ISBN 0-7167-3539-3 .
Chapters 1–10, Part 1: "Equilibrium".
Bridgman, P. W. (1 March 1914). "A Complete Collection of Thermodynamic Formulas" . Physical Review . 3 (4). American Physical Society (APS): 273– 281. doi :10.1103/physrev.3.273 . ISSN 0031-899X .
Landsberg, Peter T. Thermodynamics and Statistical Mechanics . New York: Dover Publications, Inc., 1990. (reprinted from Oxford University Press, 1978) .
Lewis, G.N., and Randall, M., "Thermodynamics", 2nd Edition, McGraw-Hill Book Company, New York, 1961.
Reichl, L.E. , A Modern Course in Statistical Physics , 2nd edition, New York: John Wiley & Sons, 1998.
Schroeder, Daniel V. Thermal Physics . San Francisco: Addison Wesley Longman, 2000 ISBN 0-201-38027-7 .
Silbey, Robert J., et al. Physical Chemistry , 4th ed. New Jersey: Wiley, 2004.
Callen, Herbert B. (1985). Thermodynamics and an Introduction to Themostatistics , 2nd edition, New York: John Wiley & Sons.